A study on the subchronic toxicity of triclocarban to the early-life development of oryzias melastigma and focused on the analysis of osmoregulatory regulation mechanisms

Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Toxicology & pharmacology 2024-05, Vol.279, p.109882-109882, Article 109882
Hauptverfasser: Sun, Zhecheng, Liang, Chuan, Ling, Yunzhe, Chen, Yang, Ma, Zhengzhuo, Xu, Yanhua, Liu, Zhiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triclocarban (TCC), a novel antimicrobial agent found in personal care products, has been extensively detected in marine environments. However, research on the toxic effects of TCC on marine organisms remains inadequate. This study delved into the subchronic toxic effects of TCC on the early life stages of marine medaka (Oryzias melastigma, O. melastigma), revealing that TCC could reduce embryo heart rate and hatching rate while diminishing the survival rate of larvae. Biomarker assays indicated that TCC could inflict damage on the embryos' antioxidant and nervous systems. Transcriptomic analysis suggested that TCC could impact cell growth, reproduction, and various life processes, activating cancer signaling pathways, increasing the likelihood of cancer, and exerting toxic effects on the immune and osmoregulatory systems. To validate and enhance our understanding of TCC's unique toxic impact on the osmoregulatory system of O. melastigma, we conducted homology modeling and molecular docking analyses on the protein involved in osmoregulation. The study intuitively revealed the potential binding affinity of TCC to sodium/potassium-transporting ATPase subunit alph (ATP1A1), indicating its ability to disrupt osmotic balance in marine fish by affecting this target protein. In summary, the results of this study will further enhance our comprehension of the potential toxic effects and mechanisms of TCC on the early stages of marine fish, with a specific focus on its unique toxic effects in osmoregulation. [Display omitted] •Oryzias melastigma model assessed TCC's subchronic toxicity in early life stages.•Investigated TCC's adverse effects on antioxidant and nervous systems•Used transcriptomic sequencing to analyze toxic effects and mechanisms•Validated TCC's impact on osmoregulation-related ATPA1 proteins
ISSN:1532-0456
1878-1659
DOI:10.1016/j.cbpc.2024.109882