An immobilized (carbene)nickel catalyst for water oxidation

Carbene-ligated nickel(II) complexes self-assemble into exceptionally robust and efficient homogeneous water oxidation catalysts. The resulting stable thin film bonds metal electrode through poly-imidazole bridges, making them supported heterogeneous electrochemical catalysts that are resilient to l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polyhedron 2024-04, Vol.252, p.116880, Article 116880
Hauptverfasser: Lu, Zhiyao, Mitra, Debanjan, Narayan, Sri R., Williams, Travis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbene-ligated nickel(II) complexes self-assemble into exceptionally robust and efficient homogeneous water oxidation catalysts. The resulting stable thin film bonds metal electrode through poly-imidazole bridges, making them supported heterogeneous electrochemical catalysts that are resilient to leaching and stripping. The electrochemical OER with our nickel-carbene catalysts exhibits excellent current densities with high efficiency, low Tafel slope, and useful longevity for a base metal catalyst. [Display omitted] The oxygen evolution reaction (OER) of water splitting is essential to electrochemical energy storage applications. While nickel electrodes are widely available heterogeneous OER catalysts, homogeneous nickel catalysts for OER are underexplored. Here we report two carbene-ligated nickel(II) complexes that are exceptionally robust and efficient homogeneous water oxidation catalysts. Remarkably, these novel nickel complexes can assemble a stable thin film onto a metal electrode through poly-imidazole bridges, making them supported heterogeneous electrochemical catalysts that are resilient to leaching and stripping. Unlike molecular catalysts and nanoparticle catalysts, such electrode-supported metal-complex catalysts for OER are rare and have the potential to inspire new designs. The electrochemical OER with our nickel-carbene catalysts exhibits excellent current densities with high efficiency, low Tafel slope, and useful longevity for a base metal catalyst. Our data show that imidazole carbene ligands stay bonded to the nickel(II) centers throughout the catalysis, which allows the facile oxygen evolution.
ISSN:0277-5387
DOI:10.1016/j.poly.2024.116880