Garnet-Based Solid-State Li Batteries with High-Surface-Area Porous LLZO Membranes

Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing Li7La3Zr2O12 (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-03, Vol.16 (10), p.12353-12362
Hauptverfasser: Zhang, Huanyu, Okur, Faruk, Pant, Bharat, Klimpel, Matthias, Butenko, Sofiia, Karabay, Dogan Tarik, Parrilli, Annapaola, Neels, Antonia, Cao, Ye, Kravchyk, Kostiantyn V., Kovalenko, Maksym V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing Li7La3Zr2O12 (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement and eventual commercialization of garnet-based solid-state Li batteries are impeded by void formation at the LLZO/Li interface at practical current densities and areal capacities beyond 1 mA cm–2 and 1 mAh cm–2, respectively, resulting in limited cycling stability and the emergence of Li dendrites. Additionally, developing a fabrication approach for thin LLZO electrolytes to achieve high energy density remains paramount. To address these critical challenges, herein, we present a facile methodology for fabricating self-standing, 50 μm thick, porous LLZO membranes with a small pore size of ca. 2.3 μm and an average porosity of 51%, resulting in a specific surface area of 1.3 μm–1, the highest reported to date. The use of such LLZO membranes significantly increases the Li/LLZO contact area, effectively mitigating void formation. This methodology combines two key elements: (i) the use of small pore formers of ca. 1.5 μm and (ii) the use of ultrafast sintering, which circumvents ceramics overdensification using rapid heating/cooling rates of ca. 50 °C per second. The fabricated porous LLZO membranes demonstrate exceptional cycling stability in a symmetrical Li/LLZO/Li cell configuration, exceeding 600 h of continuous operation at a current density of 0.1 mA cm–2.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c14422