Unsupervised domain adaptation for histopathology image segmentation with incomplete labels
Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-03, Vol.171, p.108226, Article 108226 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108226 |
container_title | Computers in biology and medicine |
container_volume | 171 |
creator | Zhou, Huihui Wang, Yan Zhang, Benyan Zhou, Chunhua Vonsky, Maxim S. Mitrofanova, Lubov B. Zou, Duowu Li, Qingli |
description | Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods.
•We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap. |
doi_str_mv | 10.1016/j.compbiomed.2024.108226 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2934269120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048252400310X</els_id><sourcerecordid>2934269120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-1a807a92f2e530552d9e6c1d5a0c423f6dc217017cb149f500eb86944390d4903</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZp_0IR9NKLt6MPf-iYhrQNBHppTj0IWRrvarEtR5IT8u9rs7sUeslpYOaZmXfmJYQy2DJg1dfD1oZhan0Y0G05cLmkG86rN2TDmloVUAr5lmwAGBSy4eUFuUzpAAASBLwnF6KRvAFVbcifhzHNE8Ynn9BRFwbjR2qcmbLJPoy0C5HufcphMnkf-rB7oX4wO6QJdwOOJ-rZ5z314yqqx4y0Ny326QN515k-4cdTvCIP329_3_ws7n_9uLu5vi-sYHUumGmgNop3HEsBZcmdwsoyVxqwkouucpazGlhtWyZVVwJg21RKSqHASQXiinw5zp1ieJwxZT34ZLHvzYhhTporIXmlGF_Rz_-hhzDHcVG3UGVdCwBRLVRzpGwMKUXs9BSXq-OLZqBXA_RB_zNArwboowFL66fTgrlda-fG88cX4NsRWB6ETx6jTtbjaNH5iDZrF_zrW_4C7JacEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957730036</pqid></control><display><type>article</type><title>Unsupervised domain adaptation for histopathology image segmentation with incomplete labels</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhou, Huihui ; Wang, Yan ; Zhang, Benyan ; Zhou, Chunhua ; Vonsky, Maxim S. ; Mitrofanova, Lubov B. ; Zou, Duowu ; Li, Qingli</creator><creatorcontrib>Zhou, Huihui ; Wang, Yan ; Zhang, Benyan ; Zhou, Chunhua ; Vonsky, Maxim S. ; Mitrofanova, Lubov B. ; Zou, Duowu ; Li, Qingli</creatorcontrib><description>Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods.
•We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108226</identifier><identifier>PMID: 38428096</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adaptation ; Algorithms ; Deep learning ; Gastric cancer ; Genetic transformation ; Histopathology ; Histopathology image segmentation ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Incomplete label ; Labels ; Machine learning ; Performance evaluation ; Stain transformation ; Staining and Labeling ; Stains ; Stomach Neoplasms ; Transformations (mathematics) ; Unsupervised domain adaptation</subject><ispartof>Computers in biology and medicine, 2024-03, Vol.171, p.108226, Article 108226</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-1a807a92f2e530552d9e6c1d5a0c423f6dc217017cb149f500eb86944390d4903</citedby><cites>FETCH-LOGICAL-c317t-1a807a92f2e530552d9e6c1d5a0c423f6dc217017cb149f500eb86944390d4903</cites><orcidid>0009-0002-6116-3236 ; 0000-0001-5063-8801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.108226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38428096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Huihui</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhang, Benyan</creatorcontrib><creatorcontrib>Zhou, Chunhua</creatorcontrib><creatorcontrib>Vonsky, Maxim S.</creatorcontrib><creatorcontrib>Mitrofanova, Lubov B.</creatorcontrib><creatorcontrib>Zou, Duowu</creatorcontrib><creatorcontrib>Li, Qingli</creatorcontrib><title>Unsupervised domain adaptation for histopathology image segmentation with incomplete labels</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods.
•We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Deep learning</subject><subject>Gastric cancer</subject><subject>Genetic transformation</subject><subject>Histopathology</subject><subject>Histopathology image segmentation</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Incomplete label</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Stain transformation</subject><subject>Staining and Labeling</subject><subject>Stains</subject><subject>Stomach Neoplasms</subject><subject>Transformations (mathematics)</subject><subject>Unsupervised domain adaptation</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaTZp_0IR9NKLt6MPf-iYhrQNBHppTj0IWRrvarEtR5IT8u9rs7sUeslpYOaZmXfmJYQy2DJg1dfD1oZhan0Y0G05cLmkG86rN2TDmloVUAr5lmwAGBSy4eUFuUzpAAASBLwnF6KRvAFVbcifhzHNE8Ynn9BRFwbjR2qcmbLJPoy0C5HufcphMnkf-rB7oX4wO6QJdwOOJ-rZ5z314yqqx4y0Ny326QN515k-4cdTvCIP329_3_ws7n_9uLu5vi-sYHUumGmgNop3HEsBZcmdwsoyVxqwkouucpazGlhtWyZVVwJg21RKSqHASQXiinw5zp1ieJwxZT34ZLHvzYhhTporIXmlGF_Rz_-hhzDHcVG3UGVdCwBRLVRzpGwMKUXs9BSXq-OLZqBXA_RB_zNArwboowFL66fTgrlda-fG88cX4NsRWB6ETx6jTtbjaNH5iDZrF_zrW_4C7JacEA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Zhou, Huihui</creator><creator>Wang, Yan</creator><creator>Zhang, Benyan</creator><creator>Zhou, Chunhua</creator><creator>Vonsky, Maxim S.</creator><creator>Mitrofanova, Lubov B.</creator><creator>Zou, Duowu</creator><creator>Li, Qingli</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-6116-3236</orcidid><orcidid>https://orcid.org/0000-0001-5063-8801</orcidid></search><sort><creationdate>202403</creationdate><title>Unsupervised domain adaptation for histopathology image segmentation with incomplete labels</title><author>Zhou, Huihui ; Wang, Yan ; Zhang, Benyan ; Zhou, Chunhua ; Vonsky, Maxim S. ; Mitrofanova, Lubov B. ; Zou, Duowu ; Li, Qingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-1a807a92f2e530552d9e6c1d5a0c423f6dc217017cb149f500eb86944390d4903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Deep learning</topic><topic>Gastric cancer</topic><topic>Genetic transformation</topic><topic>Histopathology</topic><topic>Histopathology image segmentation</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Incomplete label</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Stain transformation</topic><topic>Staining and Labeling</topic><topic>Stains</topic><topic>Stomach Neoplasms</topic><topic>Transformations (mathematics)</topic><topic>Unsupervised domain adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huihui</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhang, Benyan</creatorcontrib><creatorcontrib>Zhou, Chunhua</creatorcontrib><creatorcontrib>Vonsky, Maxim S.</creatorcontrib><creatorcontrib>Mitrofanova, Lubov B.</creatorcontrib><creatorcontrib>Zou, Duowu</creatorcontrib><creatorcontrib>Li, Qingli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Huihui</au><au>Wang, Yan</au><au>Zhang, Benyan</au><au>Zhou, Chunhua</au><au>Vonsky, Maxim S.</au><au>Mitrofanova, Lubov B.</au><au>Zou, Duowu</au><au>Li, Qingli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised domain adaptation for histopathology image segmentation with incomplete labels</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-03</date><risdate>2024</risdate><volume>171</volume><spage>108226</spage><pages>108226-</pages><artnum>108226</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods.
•We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38428096</pmid><doi>10.1016/j.compbiomed.2024.108226</doi><orcidid>https://orcid.org/0009-0002-6116-3236</orcidid><orcidid>https://orcid.org/0000-0001-5063-8801</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2024-03, Vol.171, p.108226, Article 108226 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2934269120 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adaptation Algorithms Deep learning Gastric cancer Genetic transformation Histopathology Histopathology image segmentation Humans Image processing Image Processing, Computer-Assisted Image segmentation Incomplete label Labels Machine learning Performance evaluation Stain transformation Staining and Labeling Stains Stomach Neoplasms Transformations (mathematics) Unsupervised domain adaptation |
title | Unsupervised domain adaptation for histopathology image segmentation with incomplete labels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20domain%20adaptation%20for%20histopathology%20image%20segmentation%20with%20incomplete%20labels&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Zhou,%20Huihui&rft.date=2024-03&rft.volume=171&rft.spage=108226&rft.pages=108226-&rft.artnum=108226&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108226&rft_dat=%3Cproquest_cross%3E2934269120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957730036&rft_id=info:pmid/38428096&rft_els_id=S001048252400310X&rfr_iscdi=true |