Unsupervised domain adaptation for histopathology image segmentation with incomplete labels

Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-03, Vol.171, p.108226, Article 108226
Hauptverfasser: Zhou, Huihui, Wang, Yan, Zhang, Benyan, Zhou, Chunhua, Vonsky, Maxim S., Mitrofanova, Lubov B., Zou, Duowu, Li, Qingli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108226
container_title Computers in biology and medicine
container_volume 171
creator Zhou, Huihui
Wang, Yan
Zhang, Benyan
Zhou, Chunhua
Vonsky, Maxim S.
Mitrofanova, Lubov B.
Zou, Duowu
Li, Qingli
description Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods. •We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap.
doi_str_mv 10.1016/j.compbiomed.2024.108226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2934269120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001048252400310X</els_id><sourcerecordid>2934269120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-1a807a92f2e530552d9e6c1d5a0c423f6dc217017cb149f500eb86944390d4903</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZp_0IR9NKLt6MPf-iYhrQNBHppTj0IWRrvarEtR5IT8u9rs7sUeslpYOaZmXfmJYQy2DJg1dfD1oZhan0Y0G05cLmkG86rN2TDmloVUAr5lmwAGBSy4eUFuUzpAAASBLwnF6KRvAFVbcifhzHNE8Ynn9BRFwbjR2qcmbLJPoy0C5HufcphMnkf-rB7oX4wO6QJdwOOJ-rZ5z314yqqx4y0Ny326QN515k-4cdTvCIP329_3_ws7n_9uLu5vi-sYHUumGmgNop3HEsBZcmdwsoyVxqwkouucpazGlhtWyZVVwJg21RKSqHASQXiinw5zp1ieJwxZT34ZLHvzYhhTporIXmlGF_Rz_-hhzDHcVG3UGVdCwBRLVRzpGwMKUXs9BSXq-OLZqBXA_RB_zNArwboowFL66fTgrlda-fG88cX4NsRWB6ETx6jTtbjaNH5iDZrF_zrW_4C7JacEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2957730036</pqid></control><display><type>article</type><title>Unsupervised domain adaptation for histopathology image segmentation with incomplete labels</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhou, Huihui ; Wang, Yan ; Zhang, Benyan ; Zhou, Chunhua ; Vonsky, Maxim S. ; Mitrofanova, Lubov B. ; Zou, Duowu ; Li, Qingli</creator><creatorcontrib>Zhou, Huihui ; Wang, Yan ; Zhang, Benyan ; Zhou, Chunhua ; Vonsky, Maxim S. ; Mitrofanova, Lubov B. ; Zou, Duowu ; Li, Qingli</creatorcontrib><description>Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods. •We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2024.108226</identifier><identifier>PMID: 38428096</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adaptation ; Algorithms ; Deep learning ; Gastric cancer ; Genetic transformation ; Histopathology ; Histopathology image segmentation ; Humans ; Image processing ; Image Processing, Computer-Assisted ; Image segmentation ; Incomplete label ; Labels ; Machine learning ; Performance evaluation ; Stain transformation ; Staining and Labeling ; Stains ; Stomach Neoplasms ; Transformations (mathematics) ; Unsupervised domain adaptation</subject><ispartof>Computers in biology and medicine, 2024-03, Vol.171, p.108226, Article 108226</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>2024. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-1a807a92f2e530552d9e6c1d5a0c423f6dc217017cb149f500eb86944390d4903</citedby><cites>FETCH-LOGICAL-c317t-1a807a92f2e530552d9e6c1d5a0c423f6dc217017cb149f500eb86944390d4903</cites><orcidid>0009-0002-6116-3236 ; 0000-0001-5063-8801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compbiomed.2024.108226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38428096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Huihui</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhang, Benyan</creatorcontrib><creatorcontrib>Zhou, Chunhua</creatorcontrib><creatorcontrib>Vonsky, Maxim S.</creatorcontrib><creatorcontrib>Mitrofanova, Lubov B.</creatorcontrib><creatorcontrib>Zou, Duowu</creatorcontrib><creatorcontrib>Li, Qingli</creatorcontrib><title>Unsupervised domain adaptation for histopathology image segmentation with incomplete labels</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods. •We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Deep learning</subject><subject>Gastric cancer</subject><subject>Genetic transformation</subject><subject>Histopathology</subject><subject>Histopathology image segmentation</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Incomplete label</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Stain transformation</subject><subject>Staining and Labeling</subject><subject>Stains</subject><subject>Stomach Neoplasms</subject><subject>Transformations (mathematics)</subject><subject>Unsupervised domain adaptation</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaTZp_0IR9NKLt6MPf-iYhrQNBHppTj0IWRrvarEtR5IT8u9rs7sUeslpYOaZmXfmJYQy2DJg1dfD1oZhan0Y0G05cLmkG86rN2TDmloVUAr5lmwAGBSy4eUFuUzpAAASBLwnF6KRvAFVbcifhzHNE8Ynn9BRFwbjR2qcmbLJPoy0C5HufcphMnkf-rB7oX4wO6QJdwOOJ-rZ5z314yqqx4y0Ny326QN515k-4cdTvCIP329_3_ws7n_9uLu5vi-sYHUumGmgNop3HEsBZcmdwsoyVxqwkouucpazGlhtWyZVVwJg21RKSqHASQXiinw5zp1ieJwxZT34ZLHvzYhhTporIXmlGF_Rz_-hhzDHcVG3UGVdCwBRLVRzpGwMKUXs9BSXq-OLZqBXA_RB_zNArwboowFL66fTgrlda-fG88cX4NsRWB6ETx6jTtbjaNH5iDZrF_zrW_4C7JacEA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Zhou, Huihui</creator><creator>Wang, Yan</creator><creator>Zhang, Benyan</creator><creator>Zhou, Chunhua</creator><creator>Vonsky, Maxim S.</creator><creator>Mitrofanova, Lubov B.</creator><creator>Zou, Duowu</creator><creator>Li, Qingli</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-6116-3236</orcidid><orcidid>https://orcid.org/0000-0001-5063-8801</orcidid></search><sort><creationdate>202403</creationdate><title>Unsupervised domain adaptation for histopathology image segmentation with incomplete labels</title><author>Zhou, Huihui ; Wang, Yan ; Zhang, Benyan ; Zhou, Chunhua ; Vonsky, Maxim S. ; Mitrofanova, Lubov B. ; Zou, Duowu ; Li, Qingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-1a807a92f2e530552d9e6c1d5a0c423f6dc217017cb149f500eb86944390d4903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Deep learning</topic><topic>Gastric cancer</topic><topic>Genetic transformation</topic><topic>Histopathology</topic><topic>Histopathology image segmentation</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Incomplete label</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Stain transformation</topic><topic>Staining and Labeling</topic><topic>Stains</topic><topic>Stomach Neoplasms</topic><topic>Transformations (mathematics)</topic><topic>Unsupervised domain adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huihui</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhang, Benyan</creatorcontrib><creatorcontrib>Zhou, Chunhua</creatorcontrib><creatorcontrib>Vonsky, Maxim S.</creatorcontrib><creatorcontrib>Mitrofanova, Lubov B.</creatorcontrib><creatorcontrib>Zou, Duowu</creatorcontrib><creatorcontrib>Li, Qingli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Huihui</au><au>Wang, Yan</au><au>Zhang, Benyan</au><au>Zhou, Chunhua</au><au>Vonsky, Maxim S.</au><au>Mitrofanova, Lubov B.</au><au>Zou, Duowu</au><au>Li, Qingli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised domain adaptation for histopathology image segmentation with incomplete labels</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2024-03</date><risdate>2024</risdate><volume>171</volume><spage>108226</spage><pages>108226-</pages><artnum>108226</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods. •We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>38428096</pmid><doi>10.1016/j.compbiomed.2024.108226</doi><orcidid>https://orcid.org/0009-0002-6116-3236</orcidid><orcidid>https://orcid.org/0000-0001-5063-8801</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2024-03, Vol.171, p.108226, Article 108226
issn 0010-4825
1879-0534
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2934269120
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adaptation
Algorithms
Deep learning
Gastric cancer
Genetic transformation
Histopathology
Histopathology image segmentation
Humans
Image processing
Image Processing, Computer-Assisted
Image segmentation
Incomplete label
Labels
Machine learning
Performance evaluation
Stain transformation
Staining and Labeling
Stains
Stomach Neoplasms
Transformations (mathematics)
Unsupervised domain adaptation
title Unsupervised domain adaptation for histopathology image segmentation with incomplete labels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20domain%20adaptation%20for%20histopathology%20image%20segmentation%20with%20incomplete%20labels&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Zhou,%20Huihui&rft.date=2024-03&rft.volume=171&rft.spage=108226&rft.pages=108226-&rft.artnum=108226&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2024.108226&rft_dat=%3Cproquest_cross%3E2934269120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2957730036&rft_id=info:pmid/38428096&rft_els_id=S001048252400310X&rfr_iscdi=true