Unsupervised domain adaptation for histopathology image segmentation with incomplete labels

Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2024-03, Vol.171, p.108226, Article 108226
Hauptverfasser: Zhou, Huihui, Wang, Yan, Zhang, Benyan, Zhou, Chunhua, Vonsky, Maxim S., Mitrofanova, Lubov B., Zou, Duowu, Li, Qingli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stain variations pose a major challenge to deep learning segmentation algorithms in histopathology images. Current unsupervised domain adaptation methods show promise in improving model generalization across diverse staining appearances but demand abundant accurately labeled source domain data. This paper assumes a novel scenario, namely, unsupervised domain adaptation based segmentation task with incompletely labeled source data. This paper propose a Stain-Adaptive Segmentation Network with Incomplete Labels (SASN-IL). Specifically, the algorithm consists of two stages. The first stage is an incomplete label correction stage, involving reliable model selection and label correction to rectify false-negative regions in incomplete labels. The second stage is the unsupervised domain adaptation stage, achieving segmentation on the target domain. In this stage, we introduce an adaptive stain transformation module, which adjusts the degree of transformation based on segmentation performance. We evaluate our method on a gastric cancer dataset, demonstrating significant improvements, with a 10.01% increase in Dice coefficient compared to the baseline and competitive performance relative to existing methods. •We identify a practical scenario for histopathology segmentation task.•we propose a stain-adaptive segmentation framework(SASN-IL) to address the scenario.•We propose an incomplete label correction module to enhance the precision of labels.•We propose an adaptive stain transformation module to reduce the domain gap.
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2024.108226