Specific Discrimination Polymerization for Highly Isotactic Polyesters Synthesis

Isotactic polymers have emerged with unique and excellent properties in material sciences. Specific discrimination polymerization provides an ideal pathway to achieve highly isotactic polymers from their racemic monomers, which is of great significance and a challenge in polymeric chemistry. Althoug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-04, Vol.146 (13), p.9084-9095
Hauptverfasser: Guo, Xuanhua, Xu, Guangqiang, Yang, Rulin, Wang, Qinggang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isotactic polymers have emerged with unique and excellent properties in material sciences. Specific discrimination polymerization provides an ideal pathway to achieve highly isotactic polymers from their racemic monomers, which is of great significance and a challenge in polymeric chemistry. Although an enantioselective catalyst-mediated asymmetric kinetic resolution polymerization (AKRP) process makes it possible, a general and well-defined strategy for catalyst design is still rarely reported. Here, based on a novel dual-ligand strategy, a new type of chiral (BisSalen)Al complex with high enantioselectivity has been described, in which perfect AKRP of racemic phenethylglycolide (Pegl) is achieved for the first time. The more confined asymmetric microenvironment formed by a dual ligand is the key to improve the enantioselectivity of the original catalyst. To illustrate the generality of this strategy, a series of (BisSalen)Al complexes with homo- or heterodual ligands were designed for the AKRP of Pegl.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c14091