MgO@polydopamine Nanoparticle-Loaded Photothermal Microneedle Patches Combined with Chitosan Gel Dressings for the Treatment of Infectious Wounds

As for wound drug delivery, microneedles (MNs) have attracted wide attention. However, while effective at increasing the depth of drug delivery, traditional MNs often have limited drug loads and have difficulty penetrating scabs on wounds. Herein, we develop a drug delivery system combining MgO@poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-03, Vol.16 (10), p.12202-12216
Hauptverfasser: Zheng, Gensuo, Xie, Jing, Yao, Yao, Shen, Shulin, Weng, Jiaqi, Yang, Qingliang, Yan, Qinying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As for wound drug delivery, microneedles (MNs) have attracted wide attention. However, while effective at increasing the depth of drug delivery, traditional MNs often have limited drug loads and have difficulty penetrating scabs on wounds. Herein, we develop a drug delivery system combining MgO@polydopamine (MgO@PDA) nanoparticle-loaded photothermal MN patches and chitosan (CS) gel to inhibit the formation of scabs and deliver sufficient drugs into deep tissue. When inserted into the wound, the MN system can keep the wound bed moist and weakly acidic to inhibit the formation of scabs and accelerate wound closure. The released MgO@PDA nanoparticles from both the tips and the backing layer, which immensely increase the drug load, continuously release Mg2+ in the moist, weakly acidic wound bed, promoting tissue migration and the formation of microvessels. MgO@PDA nanoparticles show excellent antibacterial activity under near-infrared irradiation synergized with the CS gel, and the PDA coating can also overcome the adverse effects of oxidative stress. Through in vitro and in vivo experiments, the MN system showed remarkable antibacterial, antioxidant, anti-inflammatory, and pro-angiogenic effects, indicating its potential in the treatment of infectious wounds.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c16880