Dealing with missing data in multi-informant studies: A comparison of approaches

Multi-informant studies are popular in social and behavioral science. However, their data analyses are challenging because data from different informants carry both shared and unique information and are often incomplete. Using Monte Carlo Simulation, the current study compares three approaches that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior research methods 2024-10, Vol.56 (7), p.6498-6519
Hauptverfasser: Chen, Po-Yi, Jia, Fan, Wu, Wei, Wang, Min-Heng, Chao, Tzi-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-informant studies are popular in social and behavioral science. However, their data analyses are challenging because data from different informants carry both shared and unique information and are often incomplete. Using Monte Carlo Simulation, the current study compares three approaches that can be used to analyze incomplete multi-informant data when there is a distinction between reference and nonreference informants. These approaches include a two-method measurement model for planned missing data (2MM-PMD), treating nonreference informants’ reports as auxiliary variables with the full-information maximum likelihood method or multiple imputation, and listwise deletion. The result suggests that 2MM-PMD, when correctly specified and data are missing at random, has the best overall performance among the examined approaches regarding point estimates, type I error rates, and statistical power. In addition, it is also more robust to data that are not missing at random.
ISSN:1554-3528
1554-3528
DOI:10.3758/s13428-024-02367-7