Ivermectin Exerts Anticonvulsant Effects Against Status Epilepticus Induced by Lithium-Pilocarpine in Rats via GABAA Receptor and Neuroinflammation Modulation: Possible Interaction of Opioidergic Pathways and KATP Channel with Nitrergic System
Status epilepticus (SE) is a critical medical emergency marked by persistent or rapidly repeating seizures, posing a threat to life. Using the lithium-pilocarpine-induced SE model, we decide to evaluate the anti-seizure effects of ivermectin as a positive allosteric modulator of GABA A receptor and...
Gespeichert in:
Veröffentlicht in: | Molecular neurobiology 2024-10, Vol.61 (10), p.7627-7638 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Status epilepticus (SE) is a critical medical emergency marked by persistent or rapidly repeating seizures, posing a threat to life. Using the lithium-pilocarpine-induced SE model, we decide to evaluate the anti-seizure effects of ivermectin as a positive allosteric modulator of GABA
A
receptor and the underlying mechanisms involved. Lithium chloride was injected intraperitoneally at a dose of 127 mg/kg, followed by the administration of pilocarpine at a dose of 60 mg/kg after a 20-h interval in order to induce SE. Subsequently, the rats received varying amounts of ivermectin (0.3, 1, 3, 5, and 10 mg/kg, i.p.) 30 min before the onset of SE. To study the underlying molecular mechanisms, we had pharmacological interventions of diazepam (1 mg/kg), glibenclamide and nicorandil as ATP-sensitive potassium channel blocker and opener (both 1 mg/kg, i.p.), naltrexone and morphine, as opioid receptor antagonist and agonist (1 mg/kg and 0.5 mg/kg, i.p., respectively). In addition, three nitric oxide inhibitors, namely, L-NAME (10 mg/kg, i.p.), 7-NI (30 mg/kg, i.p.), and aminoguanidine (100 mg/kg, i.p.), were administered to the rats in the experiment. Finally, we use ELISA and western blotting, respectively, to examine the amounts of pro-inflammatory cytokines (TNF-α and IL-1β), nitrite, and GABA
A
receptors in the rat hippocampal tissue. The study found that ivermectin, at doses of 3, 5, and 10 mg/kg, exerts anti-seizure effects and decrease Racine’s scale SE score. Interestingly glibenclamide and naltrexone reduced the anti-seizure effects of ivermectin, and from other hand diazepam, nicorandil, morphine, L-NAME, 7-NI, and aminoguanidine, enhance the effects when co-administrated with subeffective dose of ivermectin. Additionally, the study found that ivermectin decreased the elevated levels of TNF-α and IL-1β following SE, while increased the reduced expression of GABA
A
receptors. Overall, these findings suggest that ivermectin has anti-seizure effects in a SE seizure which may be mediated by the modulation of GABAergic, opioidergic, and nitrergic pathways and K
ATP
channels. |
---|---|
ISSN: | 0893-7648 1559-1182 1559-1182 |
DOI: | 10.1007/s12035-024-04061-3 |