SIRT1 mediates breast cancer development and tumorigenesis controlled by estrogen-related receptor β

Silent mating type information regulation 2 homolog 1 (SIRT1) is a class III histone deacetylase (HDAC) that is NAD + dependent and essential for metabolism, senescence, and cell survival. SIRT1 is overexpressed in several cancers, including breast cancer. SIRT1 is a well-known target gene of the es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Breast cancer (Tokyo, Japan) Japan), 2024-05, Vol.31 (3), p.440-455
Hauptverfasser: Parija, Monalisa, Prakash, Surya, Krishna, B. Madhu, Dash, Sanghamitra, Mishra, Sandip K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silent mating type information regulation 2 homolog 1 (SIRT1) is a class III histone deacetylase (HDAC) that is NAD + dependent and essential for metabolism, senescence, and cell survival. SIRT1 is overexpressed in several cancers, including breast cancer. SIRT1 is a well-known target gene of the estrogen receptor alpha (ER alpha) and is closely related to ER alpha deacetylation. Transcription factor Estrogen-related receptors (ERRs) share sequence homology with ERs in the DNA-binding domain, therefore, the possibility of sharing target genes between them is high. Our current research aims to gain insight into the function of ERRβ in regulating the activity of SIRT1 during the progression of breast cancer. ER-positive (ER + ve) breast cancer cells and tissues had considerably enhanced SIRT1 expression. Six potential ERRE sites were identified by analysis of the 5' upstream region of SIRT1, and both in vitro and in vivo experiments supported their presence. We found SIRT1 to be up-regulated in ERRβ overexpressed ER + ve breast cancer cells. Furthermore, our findings suggested that ectopic production of ERR and PCAF would increase SIRT1 activity. Our findings also indicated that ectopic production of ERRβ and PCAF increased SIRT1 activity. With sufficient evidence demonstrating the substantial involvement of SIRT1 in cell proliferation, migration, and colony formation capability, we were also able to illustrate the tumorigenic role of SIRT1. Overall, our findings highlight SIRT1's tumorigenic influence on breast cancer and suggest that SIRT1 inhibitors might serve as potential therapeutic drugs for the treatment of breast cancer.
ISSN:1340-6868
1880-4233
DOI:10.1007/s12282-024-01555-9