Mode combinability: Exploring convex combinations of permutation aligned models
We explore element-wise convex combinations of two permutation-aligned neural network parameter vectors ΘA and ΘB of size d. We conduct extensive experiments by examining various distributions of such model combinations parametrized by elements of the hypercube [0,1]d and its vicinity. Our findings...
Gespeichert in:
Veröffentlicht in: | Neural networks 2024-05, Vol.173, p.106204-106204, Article 106204 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore element-wise convex combinations of two permutation-aligned neural network parameter vectors ΘA and ΘB of size d. We conduct extensive experiments by examining various distributions of such model combinations parametrized by elements of the hypercube [0,1]d and its vicinity. Our findings reveal that broad regions of the hypercube form surfaces of low loss values, indicating that the notion of linear mode connectivity extends to a more general phenomenon which we call mode combinability. We also make several novel observations regarding linear mode connectivity and model re-basin. We demonstrate a transitivity property: two models re-based to a common third model are also linear mode connected, and a robustness property: even with significant perturbations of the neuron matchings the resulting combinations continue to form a working model. Moreover, we analyze the functional and weight similarity of model combinations and show that such combinations are non-vacuous in the sense that there are significant functional differences between the resulting models. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2024.106204 |