Molecular characterization and environmental impact of newly isolated lytic phage SLAM_phiST1N3 in the Cornellvirus genus for biocontrol of a multidrug-resistant Salmonella Typhimurium in the swine industry chain

Salmonella Typhimurium is a highly lethal pathogenic bacterium in weaned piglets, causing significant treatment costs and economic losses in the swine industry. Additionally, due to its ability to induce zoonotic diseases, resulting in harm to humans through the transmission of the pathogen from por...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-04, Vol.922, p.171208-171208, Article 171208
Hauptverfasser: Choi, Youbin, Kwak, Min-Jin, Kang, Min-Geun, Kang, An Na, Lee, Woogji, Mun, Daye, Choi, Hyejin, Park, Jeongkuk, Eor, Ju Young, Song, Minho, Kim, Jong Nam, Oh, Sangnam, Kim, Younghoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Salmonella Typhimurium is a highly lethal pathogenic bacterium in weaned piglets, causing significant treatment costs and economic losses in the swine industry. Additionally, due to its ability to induce zoonotic diseases, resulting in harm to humans through the transmission of the pathogen from pork, it presents a serious public health issue. Bacteriophages (phages), viruses that infect specific bacterial strains, have been proposed as an alternative to antibiotics for controlling pathogenic bacteria. In this study, we isolated SLAM_phiST1N3, a phage infecting a multidrug-resistant (MDR) S. Typhimurium wild-type strain isolated from diseased pigs. First, comparative genomics and phylogenetic analysis revealed that SLAM_phiST1N3 belongs to the Cornellvirus genus. Moreover, utilizing a novel classification approach introduced in this study, SLAM_phiST1N3 was classified at the species level. Host range experiments demonstrated that SLAM_phiST1N3 did not infect other pathogenic bacteria or probiotics derived from pigs or other livestock. While complete eradication of Salmonella was not achievable in the liquid inhibition assay, surprisingly, we succeeded in largely eliminating Salmonella in the FIMM analysis, a gut simulation system using weaned piglet feces. Furthermore, using the C. elegans model, we showcased the potential of SLAM_phiST1N3 to prevent S. Typhimurium infection in living organisms. In addition, it was confirmed that bacterial control could be achieved when phage was applied to Salmonella-contaminated pork. pH and temperature stability experiments demonstrated that SLAM_phiST1N3 can endure swine industry processes and digestive conditions. In conclusion, SLAM_phiST1N3 demonstrates potential environmental impact as a substance for Salmonella prevention across various aspects of the swine industry chain. [Display omitted] •SLAM_phiST1N3, a phage inhibiting a MDR S. typhimurium, belongs to the Cornellvirus genus.•SLAM_phiST1N3 eliminated Salmonella in the FIMM analysis for the swine production environments.•SLAM_phiST1N3 critically prevent S. typhimurium infection in C. elegans model.•SLAM_phiST1N3 was successfully applied to Salmonella-contaminated pork.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.171208