SERS-Based Hydrogen Bonding Induction Strategy for Gaseous Acetic Acid Capture and Detection

Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-03, Vol.96 (10), p.4275-4281
Hauptverfasser: Kou, Yichuan, Zhang, Xia-Guang, Li, Hongmei, Zhang, Kai-Le, Xu, Qing-Chi, Zheng, Qing-Na, Tian, Jing-Hua, Zhang, Yue-Jiao, Li, Jian-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (I O–H/I ref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c05905