Stress analysis of buried steel pipelines at strike-slip fault crossings
Existing analytical methods for the stress analysis of buried steel pipelines at crossings with active strike-slip faults depend on a number of simplifications, which limit their applicability and may even lead to non-conservative results. The analytical methodology presented herein maintains the we...
Gespeichert in:
Veröffentlicht in: | Soil dynamics and earthquake engineering (1984) 2007-03, Vol.27 (3), p.200-211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existing analytical methods for the stress analysis of buried steel pipelines at crossings with active strike-slip faults depend on a number of simplifications, which limit their applicability and may even lead to non-conservative results. The analytical methodology presented herein maintains the well-established assumptions of existing methodologies, but also introduces a number of refinements in order to achieve a more wide range of application without any major simplicity sacrifice. More specifically, it employs equations of equilibrium and compatibility of displacements to derive the axial force applied on the pipeline and adopts a combination of beam-on-elastic-foundation and elastic-beam theory to calculate the developing bending moment. Although indirectly, material and large-displacement non-linearities are also taken into account, while the actual distribution of stresses on the pipeline cross-section is considered for the calculation of the maximum design strain. The proposed methodology is evaluated against the results of a series of benchmark 3D non-linear analyses with the finite element method. It is shown that fairly accurate predictions of pipeline strains may be obtained for a wide range of crossing angles and fault movement magnitudes encountered in practice. |
---|---|
ISSN: | 0267-7261 1879-341X |
DOI: | 10.1016/j.soildyn.2006.08.001 |