Uptake, accumulation and metabolism of UV-320 in vegetables and its impact on growth and quality

UV-320 is classified as a Substance of Very High Concern (SVHC) by the European Chemicals Agency and has attracted significant attention due to its presence in the environment. Understanding the uptake, translocation and metabolic patterns of UV-320 in vegetables is essential for assessing their abi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-04, Vol.922, p.171228-171228, Article 171228
Hauptverfasser: Li, Bingru, Yao, Zhenzhen, Wei, Dizhe, Guo, Linlin, Ma, Zhihong, Li, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:UV-320 is classified as a Substance of Very High Concern (SVHC) by the European Chemicals Agency and has attracted significant attention due to its presence in the environment. Understanding the uptake, translocation and metabolic patterns of UV-320 in vegetables is essential for assessing their ability to bioaccumulate and potential risks to human health. In this study, we investigated the uptake and translocation of UV-320 in lettuce and radish by hydroponic experiments. The results showed that the root concentration factors (Croot/Csolution, RCF) of lettuce and radish were in the range of 47.9 to 464 mL/g and 194 to 787 mL/g, respectively. The transfer factors (Cshoot/Croot, TF) were observed to be 0.001–0.012 for lettuce and 0.02–0.05 for radish. Additionally, non-targeted screening identified twelve phase I and one phase II metabolites of UV-320 in vegetables, which were confirmed based on their molecular formulas and structures. The metabolic pathways involving oxidation, ketonylation and deamination were proposed in vegetables. Also, we have observed that UV-320 inhibits the growth of vegetables. Meanwhile, we evaluated the health risk of UV-320 in lettuce and radish and found that the consumption of lettuce is relatively safe, while the consumption of radish has a risk of HQ >1 for both adults and children, which should be seriously considered. This study provides valuable insights into the behavior and ecological risks of UV-320 in the environment. [Display omitted] •UV-320 was effectively adsorbed by the roots of lettuce and radish.•UV-320 exhibited poor translocation from the roots to the shoots.•Twelve phase I and one phase II metabolites of UV-320 were first identified in vegetables.•UV-320 has adverse impacts on vegetable growth and quality.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.171228