Research on automatic generation of multimodal medical image reports based on memory driven

The task of automatic generation of medical image reports faces various challenges, such as diverse types of diseases and a lack of professionalism and fluency in report descriptions. To address these issues, this paper proposes a multimodal medical imaging report based on memory drive method (mMIRm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sheng wu yi xue gong cheng xue za zhi 2024-02, Vol.41 (1), p.60-69
Hauptverfasser: Xing, Suxia, Fang, Junze, Ju, Zihan, Guo, Zheng, Wang, Yu
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The task of automatic generation of medical image reports faces various challenges, such as diverse types of diseases and a lack of professionalism and fluency in report descriptions. To address these issues, this paper proposes a multimodal medical imaging report based on memory drive method (mMIRmd). Firstly, a hierarchical vision transformer using shifted windows (Swin-Transformer) is utilized to extract multi-perspective visual features of patient medical images, and semantic features of textual medical history information are extracted using bidirectional encoder representations from transformers (BERT). Subsequently, the visual and semantic features are integrated to enhance the model's ability to recognize different disease types. Furthermore, a medical text pre-trained word vector dictionary is employed to encode labels of visual features, thereby enhancing the professionalism of the generated reports. Finally, a memory driven module is introduced in the decoder, addressing long-distance dependencies
ISSN:1001-5515
DOI:10.7507/1001-5515.202304001