α-Glucan-type exopolysaccharides with varied linkage patterns: Mitigating post-prandial glucose spike and prolonging the glycemic response
Microbial exopolysaccharides (EPSs) are traditionally known as prebiotics that foster colon health by serving as microbiota nutrients, while remaining undigested in the small intestine. However, recent findings suggest that α-glucan structures in EPS, with their varied α-linkage types, can be hydrol...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2024-05, Vol.331, p.121898-121898, Article 121898 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial exopolysaccharides (EPSs) are traditionally known as prebiotics that foster colon health by serving as microbiota nutrients, while remaining undigested in the small intestine. However, recent findings suggest that α-glucan structures in EPS, with their varied α-linkage types, can be hydrolyzed by mammalian α-glucosidases at differing rates. This study explores α-glucan-type EPSs, including dextran, alternan, and reuteran, assessing their digestive properties both in vitro and in vivo. Notably, while fungal amyloglucosidase – a common in vitro tool for carbohydrate digestibility analysis – shows limited efficacy in breaking down these structures, mammalian intestinal α-glucosidases can partially degrade them into glucose, albeit slowly. In vivo experiments with mice revealed that various EPSs elicited a significantly lower glycemic response (p |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2024.121898 |