Karhunen–Loève approximation of random fields by generalized fast multipole methods
KL approximation of a possibly instationary random field a( ω, x) ∈ L 2( Ω, d P; L ∞( D)) subject to prescribed meanfield E a ( x ) = ∫ Ω a ( ω , x ) d P ( ω ) and covariance V a ( x , x ′ ) = ∫ Ω ( a ( ω , x ) - E a ( x ) ) ( a ( ω , x ′ ) - E a ( x ′ ) ) d P ( ω ) in a polyhedral domain D ⊂ R d is...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2006-09, Vol.217 (1), p.100-122 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | KL approximation of a possibly instationary random field
a(
ω,
x)
∈
L
2(
Ω,
d
P;
L
∞(
D)) subject to prescribed meanfield
E
a
(
x
)
=
∫
Ω
a
(
ω
,
x
)
d
P
(
ω
)
and covariance
V
a
(
x
,
x
′
)
=
∫
Ω
(
a
(
ω
,
x
)
-
E
a
(
x
)
)
(
a
(
ω
,
x
′
)
-
E
a
(
x
′
)
)
d
P
(
ω
)
in a polyhedral domain
D
⊂
R
d
is analyzed. We show how for stationary covariances
V
a
(
x,
x′)
=
g
a
(|
x
−
x′|) with
g
a
(
z) analytic outside of
z
=
0, an
M-term approximate KL-expansion
a
M
(
ω,
x) of
a(
ω,
x) can be computed in log-linear complexity. The approach applies in arbitrary domains
D and for nonseparable covariances
C
a
. It involves Galerkin approximation of the KL eigenvalue problem by discontinuous finite elements of degree
p
⩾
0 on a quasiuniform, possibly unstructured mesh of width
h in
D, plus a generalized fast multipole accelerated Krylov-Eigensolver. The approximate KL-expansion
a
M
(
x,
ω) of
a(
x,
ω) has accuracy O(exp(−
bM
1/
d
)) if
g
a
is analytic at
z
=
0 and accuracy O(
M
−
k/
d
) if
g
a
is
C
k
at zero. It is obtained in O(
MN(log
N)
b
) operations where
N
=
O(
h
−
d
). |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2006.01.048 |