Stop moving: MR motion correction as an opportunity for artificial intelligence

Subject motion is a long-standing problem of magnetic resonance imaging (MRI), which can seriously deteriorate the image quality. Various prospective and retrospective methods have been proposed for MRI motion correction, among which deep learning approaches have achieved state-of-the-art motion cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) N.Y.), 2024-07, Vol.37 (3), p.397-409
Hauptverfasser: Zhou, Zijian, Hu, Peng, Qi, Haikun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subject motion is a long-standing problem of magnetic resonance imaging (MRI), which can seriously deteriorate the image quality. Various prospective and retrospective methods have been proposed for MRI motion correction, among which deep learning approaches have achieved state-of-the-art motion correction performance. This survey paper aims to provide a comprehensive review of deep learning-based MRI motion correction methods. Neural networks used for motion artifacts reduction and motion estimation in the image domain or frequency domain are detailed. Furthermore, besides motion-corrected MRI reconstruction, how estimated motion is applied in other downstream tasks is briefly introduced, aiming to strengthen the interaction between different research areas. Finally, we identify current limitations and point out future directions of deep learning-based MRI motion correction.
ISSN:1352-8661
1352-8661
DOI:10.1007/s10334-023-01144-5