Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability

Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-03, Vol.58 (9), p.4167-4180
Hauptverfasser: VanderRoest, Jacob P., Fowler, Julie A., Rhoades, Charles C., Roth, Holly K., Broeckling, Corey D., Fegel, Timothy S., McKenna, Amy M., Bechtold, Emily K., Boot, Claudia M., Wilkins, Michael J., Borch, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4180
container_issue 9
container_start_page 4167
container_title Environmental science & technology
container_volume 58
creator VanderRoest, Jacob P.
Fowler, Julie A.
Rhoades, Charles C.
Roth, Holly K.
Broeckling, Corey D.
Fegel, Timothy S.
McKenna, Amy M.
Bechtold, Emily K.
Boot, Claudia M.
Wilkins, Michael J.
Borch, Thomas
description Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled “pyrocosm” approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography–mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.
doi_str_mv 10.1021/acs.est.3c09797
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2930475013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930475013</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-1831aa10af3069856d28832c3b5f6eebd9fde1e81977dd0e01b4392f764ffb4f3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EoqUwsyFLLEgorR3HiTNCRUulVh0AiS1y4nNJlcTFTob-exy1dEBiuuV93909hG4pGVMS0oks3BhcO2YFSZM0OUNDykMScMHpORoSQlmQsvhzgK6c2xJCQkbEJRowwQSPWDhE81lpAS_qnSxah02D2y_Ab6as8ApamZvK1IBlo_DabmRTFngl2xYsfi6Ngo2VSuZlVbb7a3ShZeXg5jhH6GP28j59DZbr-WL6tAwko7wNqGBUSkqkZiROBY9VKAQLC5ZzHQPkKtUKKAiaJolSBAjNI5aGOokjrfNIsxF6OPTurPnu_OtZXboCqko2YDqXhSkjUcL94x69_4NuTWcbf52neORJGvfU5EAV1jhnQWc7W9bS7jNKst5x5h1nffro2Cfujr1dXoM68b9SPfB4APrkaed_dT9yxIX1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954293163</pqid></control><display><type>article</type><title>Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability</title><source>American Chemical Society</source><creator>VanderRoest, Jacob P. ; Fowler, Julie A. ; Rhoades, Charles C. ; Roth, Holly K. ; Broeckling, Corey D. ; Fegel, Timothy S. ; McKenna, Amy M. ; Bechtold, Emily K. ; Boot, Claudia M. ; Wilkins, Michael J. ; Borch, Thomas</creator><creatorcontrib>VanderRoest, Jacob P. ; Fowler, Julie A. ; Rhoades, Charles C. ; Roth, Holly K. ; Broeckling, Corey D. ; Fegel, Timothy S. ; McKenna, Amy M. ; Bechtold, Emily K. ; Boot, Claudia M. ; Wilkins, Michael J. ; Borch, Thomas</creatorcontrib><description>Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled “pyrocosm” approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography–mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.3c09797</identifier><identifier>PMID: 38385432</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biodegradability ; Biodegradation ; Biogeochemical Cycling ; Carbon dioxide ; Cyclotron resonance ; Ecosystem recovery ; Efflux ; Fourier transforms ; Gas chromatography ; Glycine ; Heterotrophs ; Intermediates ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Microorganisms ; Molecular weight ; Nutrients ; Organic carbon ; Organic matter ; Organic soils ; Recolonization ; Scientific imaging ; Soil organic matter ; Soils ; Substrates ; Wildfires</subject><ispartof>Environmental science &amp; technology, 2024-03, Vol.58 (9), p.4167-4180</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 5, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a315t-1831aa10af3069856d28832c3b5f6eebd9fde1e81977dd0e01b4392f764ffb4f3</cites><orcidid>0000-0003-2733-517X ; 0000-0002-6158-827X ; 0000-0002-4251-1613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.3c09797$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.3c09797$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38385432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>VanderRoest, Jacob P.</creatorcontrib><creatorcontrib>Fowler, Julie A.</creatorcontrib><creatorcontrib>Rhoades, Charles C.</creatorcontrib><creatorcontrib>Roth, Holly K.</creatorcontrib><creatorcontrib>Broeckling, Corey D.</creatorcontrib><creatorcontrib>Fegel, Timothy S.</creatorcontrib><creatorcontrib>McKenna, Amy M.</creatorcontrib><creatorcontrib>Bechtold, Emily K.</creatorcontrib><creatorcontrib>Boot, Claudia M.</creatorcontrib><creatorcontrib>Wilkins, Michael J.</creatorcontrib><creatorcontrib>Borch, Thomas</creatorcontrib><title>Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled “pyrocosm” approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography–mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.</description><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biogeochemical Cycling</subject><subject>Carbon dioxide</subject><subject>Cyclotron resonance</subject><subject>Ecosystem recovery</subject><subject>Efflux</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>Glycine</subject><subject>Heterotrophs</subject><subject>Intermediates</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Molecular weight</subject><subject>Nutrients</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Recolonization</subject><subject>Scientific imaging</subject><subject>Soil organic matter</subject><subject>Soils</subject><subject>Substrates</subject><subject>Wildfires</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EoqUwsyFLLEgorR3HiTNCRUulVh0AiS1y4nNJlcTFTob-exy1dEBiuuV93909hG4pGVMS0oks3BhcO2YFSZM0OUNDykMScMHpORoSQlmQsvhzgK6c2xJCQkbEJRowwQSPWDhE81lpAS_qnSxah02D2y_Ab6as8ApamZvK1IBlo_DabmRTFngl2xYsfi6Ngo2VSuZlVbb7a3ShZeXg5jhH6GP28j59DZbr-WL6tAwko7wNqGBUSkqkZiROBY9VKAQLC5ZzHQPkKtUKKAiaJolSBAjNI5aGOokjrfNIsxF6OPTurPnu_OtZXboCqko2YDqXhSkjUcL94x69_4NuTWcbf52neORJGvfU5EAV1jhnQWc7W9bS7jNKst5x5h1nffro2Cfujr1dXoM68b9SPfB4APrkaed_dT9yxIX1</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>VanderRoest, Jacob P.</creator><creator>Fowler, Julie A.</creator><creator>Rhoades, Charles C.</creator><creator>Roth, Holly K.</creator><creator>Broeckling, Corey D.</creator><creator>Fegel, Timothy S.</creator><creator>McKenna, Amy M.</creator><creator>Bechtold, Emily K.</creator><creator>Boot, Claudia M.</creator><creator>Wilkins, Michael J.</creator><creator>Borch, Thomas</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2733-517X</orcidid><orcidid>https://orcid.org/0000-0002-6158-827X</orcidid><orcidid>https://orcid.org/0000-0002-4251-1613</orcidid></search><sort><creationdate>20240305</creationdate><title>Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability</title><author>VanderRoest, Jacob P. ; Fowler, Julie A. ; Rhoades, Charles C. ; Roth, Holly K. ; Broeckling, Corey D. ; Fegel, Timothy S. ; McKenna, Amy M. ; Bechtold, Emily K. ; Boot, Claudia M. ; Wilkins, Michael J. ; Borch, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-1831aa10af3069856d28832c3b5f6eebd9fde1e81977dd0e01b4392f764ffb4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biogeochemical Cycling</topic><topic>Carbon dioxide</topic><topic>Cyclotron resonance</topic><topic>Ecosystem recovery</topic><topic>Efflux</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>Glycine</topic><topic>Heterotrophs</topic><topic>Intermediates</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Molecular weight</topic><topic>Nutrients</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Recolonization</topic><topic>Scientific imaging</topic><topic>Soil organic matter</topic><topic>Soils</topic><topic>Substrates</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VanderRoest, Jacob P.</creatorcontrib><creatorcontrib>Fowler, Julie A.</creatorcontrib><creatorcontrib>Rhoades, Charles C.</creatorcontrib><creatorcontrib>Roth, Holly K.</creatorcontrib><creatorcontrib>Broeckling, Corey D.</creatorcontrib><creatorcontrib>Fegel, Timothy S.</creatorcontrib><creatorcontrib>McKenna, Amy M.</creatorcontrib><creatorcontrib>Bechtold, Emily K.</creatorcontrib><creatorcontrib>Boot, Claudia M.</creatorcontrib><creatorcontrib>Wilkins, Michael J.</creatorcontrib><creatorcontrib>Borch, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VanderRoest, Jacob P.</au><au>Fowler, Julie A.</au><au>Rhoades, Charles C.</au><au>Roth, Holly K.</au><au>Broeckling, Corey D.</au><au>Fegel, Timothy S.</au><au>McKenna, Amy M.</au><au>Bechtold, Emily K.</au><au>Boot, Claudia M.</au><au>Wilkins, Michael J.</au><au>Borch, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2024-03-05</date><risdate>2024</risdate><volume>58</volume><issue>9</issue><spage>4167</spage><epage>4180</epage><pages>4167-4180</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled “pyrocosm” approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography–mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38385432</pmid><doi>10.1021/acs.est.3c09797</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2733-517X</orcidid><orcidid>https://orcid.org/0000-0002-6158-827X</orcidid><orcidid>https://orcid.org/0000-0002-4251-1613</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2024-03, Vol.58 (9), p.4167-4180
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2930475013
source American Chemical Society
subjects Biodegradability
Biodegradation
Biogeochemical Cycling
Carbon dioxide
Cyclotron resonance
Ecosystem recovery
Efflux
Fourier transforms
Gas chromatography
Glycine
Heterotrophs
Intermediates
Mass spectrometry
Mass spectroscopy
Metabolism
Metabolites
Microorganisms
Molecular weight
Nutrients
Organic carbon
Organic matter
Organic soils
Recolonization
Scientific imaging
Soil organic matter
Soils
Substrates
Wildfires
title Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fire%20Impacts%20on%20the%20Soil%20Metabolome%20and%20Organic%20Matter%20Biodegradability&rft.jtitle=Environmental%20science%20&%20technology&rft.au=VanderRoest,%20Jacob%20P.&rft.date=2024-03-05&rft.volume=58&rft.issue=9&rft.spage=4167&rft.epage=4180&rft.pages=4167-4180&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.3c09797&rft_dat=%3Cproquest_cross%3E2930475013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954293163&rft_id=info:pmid/38385432&rfr_iscdi=true