Fire Impacts on the Soil Metabolome and Organic Matter Biodegradability

Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-03, Vol.58 (9), p.4167-4180
Hauptverfasser: VanderRoest, Jacob P., Fowler, Julie A., Rhoades, Charles C., Roth, Holly K., Broeckling, Corey D., Fegel, Timothy S., McKenna, Amy M., Bechtold, Emily K., Boot, Claudia M., Wilkins, Michael J., Borch, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled “pyrocosm” approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography–mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.3c09797