IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing

Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2024-05, Vol.54 (5), p.2720-2733
Hauptverfasser: Xie, Guoyang, Wang, Jinbao, Liu, Jiaqi, Lyu, Jiayi, Liu, Yong, Wang, Chengjie, Zheng, Feng, Jin, Yaochu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2733
container_issue 5
container_start_page 2720
container_title IEEE transactions on cybernetics
container_volume 54
creator Xie, Guoyang
Wang, Jinbao
Liu, Jiaqi
Lyu, Jiayi
Liu, Yong
Wang, Chengjie
Zheng, Feng
Jin, Yaochu
description Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad
doi_str_mv 10.1109/TCYB.2024.3357213
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2930474088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443076</ieee_id><sourcerecordid>3040043967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d5ceea46a9b4621b1f70cc1cd419945df2456c0efdf983d165ea22149e2c333a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EolXpD0BCKBILS4q_4sRs_QIitWIpA5PlOpeSkjglTob-e1y1IMQtd7Kee3V-ELomeEQIlg-r6ftkRDHlI8aimBJ2hvqUiCSkNI7Of2cR99DQuS32lfgnmVyiHkuYnxnto3m6DNPx7DFIbda5til0GaSV3kAwtnWly30wgxZMW9Q2mIA1H5VuPoPCBkttu1ybtmsKu7lCF7kuHQxPfYDenuar6Uu4eH1Op-NFaFiE2zCLDIDmQss1F5SsSR5jY4jJOJGSR1lOeSQMhjzLZcIyIiLQlBIugRrGmGYDdH_M3TX1VweuVVXhDJSltlB3TlHJMI85ThKP3v1Dt3XXWH-d8gzGnEkRe4ocKdPUzjWQq11T-C_uFcHqoFkdNKuDZnXS7HduT8nduoLsd-NHqgdujkABAH8COWc4FuwbfqZ-sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040043967</pqid></control><display><type>article</type><title>IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Guoyang ; Wang, Jinbao ; Liu, Jiaqi ; Lyu, Jiayi ; Liu, Yong ; Wang, Chengjie ; Zheng, Feng ; Jin, Yaochu</creator><creatorcontrib>Xie, Guoyang ; Wang, Jinbao ; Liu, Jiaqi ; Lyu, Jiayi ; Liu, Yong ; Wang, Chengjie ; Zheng, Feng ; Jin, Yaochu</creatorcontrib><description>Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2024.3357213</identifier><identifier>PMID: 38381632</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Benchmark testing ; Benchmarks ; Computer vision ; Feature extraction ; Image reconstruction ; Inference algorithms ; instance segmentation ; Manufacturing ; Noise measurement ; Redesign ; Source code ; Training ; unsupervised learning</subject><ispartof>IEEE transactions on cybernetics, 2024-05, Vol.54 (5), p.2720-2733</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d5ceea46a9b4621b1f70cc1cd419945df2456c0efdf983d165ea22149e2c333a3</citedby><cites>FETCH-LOGICAL-c350t-d5ceea46a9b4621b1f70cc1cd419945df2456c0efdf983d165ea22149e2c333a3</cites><orcidid>0000-0001-5916-8965 ; 0000-0001-8433-8153 ; 0000-0002-2153-8411 ; 0000-0003-1100-0631 ; 0000-0003-4216-8090 ; 0000-0002-1701-9141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38381632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Guoyang</creatorcontrib><creatorcontrib>Wang, Jinbao</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Lyu, Jiayi</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Wang, Chengjie</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Jin, Yaochu</creatorcontrib><title>IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Image reconstruction</subject><subject>Inference algorithms</subject><subject>instance segmentation</subject><subject>Manufacturing</subject><subject>Noise measurement</subject><subject>Redesign</subject><subject>Source code</subject><subject>Training</subject><subject>unsupervised learning</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EolXpD0BCKBILS4q_4sRs_QIitWIpA5PlOpeSkjglTob-e1y1IMQtd7Kee3V-ELomeEQIlg-r6ftkRDHlI8aimBJ2hvqUiCSkNI7Of2cR99DQuS32lfgnmVyiHkuYnxnto3m6DNPx7DFIbda5til0GaSV3kAwtnWly30wgxZMW9Q2mIA1H5VuPoPCBkttu1ybtmsKu7lCF7kuHQxPfYDenuar6Uu4eH1Op-NFaFiE2zCLDIDmQss1F5SsSR5jY4jJOJGSR1lOeSQMhjzLZcIyIiLQlBIugRrGmGYDdH_M3TX1VweuVVXhDJSltlB3TlHJMI85ThKP3v1Dt3XXWH-d8gzGnEkRe4ocKdPUzjWQq11T-C_uFcHqoFkdNKuDZnXS7HduT8nduoLsd-NHqgdujkABAH8COWc4FuwbfqZ-sg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xie, Guoyang</creator><creator>Wang, Jinbao</creator><creator>Liu, Jiaqi</creator><creator>Lyu, Jiayi</creator><creator>Liu, Yong</creator><creator>Wang, Chengjie</creator><creator>Zheng, Feng</creator><creator>Jin, Yaochu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5916-8965</orcidid><orcidid>https://orcid.org/0000-0001-8433-8153</orcidid><orcidid>https://orcid.org/0000-0002-2153-8411</orcidid><orcidid>https://orcid.org/0000-0003-1100-0631</orcidid><orcidid>https://orcid.org/0000-0003-4216-8090</orcidid><orcidid>https://orcid.org/0000-0002-1701-9141</orcidid></search><sort><creationdate>20240501</creationdate><title>IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing</title><author>Xie, Guoyang ; Wang, Jinbao ; Liu, Jiaqi ; Lyu, Jiayi ; Liu, Yong ; Wang, Chengjie ; Zheng, Feng ; Jin, Yaochu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d5ceea46a9b4621b1f70cc1cd419945df2456c0efdf983d165ea22149e2c333a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Image reconstruction</topic><topic>Inference algorithms</topic><topic>instance segmentation</topic><topic>Manufacturing</topic><topic>Noise measurement</topic><topic>Redesign</topic><topic>Source code</topic><topic>Training</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Guoyang</creatorcontrib><creatorcontrib>Wang, Jinbao</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Lyu, Jiayi</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Wang, Chengjie</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Jin, Yaochu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Guoyang</au><au>Wang, Jinbao</au><au>Liu, Jiaqi</au><au>Lyu, Jiayi</au><au>Liu, Yong</au><au>Wang, Chengjie</au><au>Zheng, Feng</au><au>Jin, Yaochu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>54</volume><issue>5</issue><spage>2720</spage><epage>2733</epage><pages>2720-2733</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38381632</pmid><doi>10.1109/TCYB.2024.3357213</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5916-8965</orcidid><orcidid>https://orcid.org/0000-0001-8433-8153</orcidid><orcidid>https://orcid.org/0000-0002-2153-8411</orcidid><orcidid>https://orcid.org/0000-0003-1100-0631</orcidid><orcidid>https://orcid.org/0000-0003-4216-8090</orcidid><orcidid>https://orcid.org/0000-0002-1701-9141</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2024-05, Vol.54 (5), p.2720-2733
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_2930474088
source IEEE Electronic Library (IEL)
subjects Algorithms
Anomalies
Anomaly detection
Benchmark testing
Benchmarks
Computer vision
Feature extraction
Image reconstruction
Inference algorithms
instance segmentation
Manufacturing
Noise measurement
Redesign
Source code
Training
unsupervised learning
title IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IM-IAD:%20Industrial%20Image%20Anomaly%20Detection%20Benchmark%20in%20Manufacturing&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Xie,%20Guoyang&rft.date=2024-05-01&rft.volume=54&rft.issue=5&rft.spage=2720&rft.epage=2733&rft.pages=2720-2733&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2024.3357213&rft_dat=%3Cproquest_RIE%3E3040043967%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040043967&rft_id=info:pmid/38381632&rft_ieee_id=10443076&rfr_iscdi=true