IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing
Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2024-05, Vol.54 (5), p.2720-2733 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2733 |
---|---|
container_issue | 5 |
container_start_page | 2720 |
container_title | IEEE transactions on cybernetics |
container_volume | 54 |
creator | Xie, Guoyang Wang, Jinbao Liu, Jiaqi Lyu, Jiayi Liu, Yong Wang, Chengjie Zheng, Feng Jin, Yaochu |
description | Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad |
doi_str_mv | 10.1109/TCYB.2024.3357213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2930474088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443076</ieee_id><sourcerecordid>3040043967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d5ceea46a9b4621b1f70cc1cd419945df2456c0efdf983d165ea22149e2c333a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EolXpD0BCKBILS4q_4sRs_QIitWIpA5PlOpeSkjglTob-e1y1IMQtd7Kee3V-ELomeEQIlg-r6ftkRDHlI8aimBJ2hvqUiCSkNI7Of2cR99DQuS32lfgnmVyiHkuYnxnto3m6DNPx7DFIbda5til0GaSV3kAwtnWly30wgxZMW9Q2mIA1H5VuPoPCBkttu1ybtmsKu7lCF7kuHQxPfYDenuar6Uu4eH1Op-NFaFiE2zCLDIDmQss1F5SsSR5jY4jJOJGSR1lOeSQMhjzLZcIyIiLQlBIugRrGmGYDdH_M3TX1VweuVVXhDJSltlB3TlHJMI85ThKP3v1Dt3XXWH-d8gzGnEkRe4ocKdPUzjWQq11T-C_uFcHqoFkdNKuDZnXS7HduT8nduoLsd-NHqgdujkABAH8COWc4FuwbfqZ-sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040043967</pqid></control><display><type>article</type><title>IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Guoyang ; Wang, Jinbao ; Liu, Jiaqi ; Lyu, Jiayi ; Liu, Yong ; Wang, Chengjie ; Zheng, Feng ; Jin, Yaochu</creator><creatorcontrib>Xie, Guoyang ; Wang, Jinbao ; Liu, Jiaqi ; Lyu, Jiayi ; Liu, Yong ; Wang, Chengjie ; Zheng, Feng ; Jin, Yaochu</creatorcontrib><description>Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2024.3357213</identifier><identifier>PMID: 38381632</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomaly detection ; Benchmark testing ; Benchmarks ; Computer vision ; Feature extraction ; Image reconstruction ; Inference algorithms ; instance segmentation ; Manufacturing ; Noise measurement ; Redesign ; Source code ; Training ; unsupervised learning</subject><ispartof>IEEE transactions on cybernetics, 2024-05, Vol.54 (5), p.2720-2733</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d5ceea46a9b4621b1f70cc1cd419945df2456c0efdf983d165ea22149e2c333a3</citedby><cites>FETCH-LOGICAL-c350t-d5ceea46a9b4621b1f70cc1cd419945df2456c0efdf983d165ea22149e2c333a3</cites><orcidid>0000-0001-5916-8965 ; 0000-0001-8433-8153 ; 0000-0002-2153-8411 ; 0000-0003-1100-0631 ; 0000-0003-4216-8090 ; 0000-0002-1701-9141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38381632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Guoyang</creatorcontrib><creatorcontrib>Wang, Jinbao</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Lyu, Jiayi</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Wang, Chengjie</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Jin, Yaochu</creatorcontrib><title>IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Image reconstruction</subject><subject>Inference algorithms</subject><subject>instance segmentation</subject><subject>Manufacturing</subject><subject>Noise measurement</subject><subject>Redesign</subject><subject>Source code</subject><subject>Training</subject><subject>unsupervised learning</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EolXpD0BCKBILS4q_4sRs_QIitWIpA5PlOpeSkjglTob-e1y1IMQtd7Kee3V-ELomeEQIlg-r6ftkRDHlI8aimBJ2hvqUiCSkNI7Of2cR99DQuS32lfgnmVyiHkuYnxnto3m6DNPx7DFIbda5til0GaSV3kAwtnWly30wgxZMW9Q2mIA1H5VuPoPCBkttu1ybtmsKu7lCF7kuHQxPfYDenuar6Uu4eH1Op-NFaFiE2zCLDIDmQss1F5SsSR5jY4jJOJGSR1lOeSQMhjzLZcIyIiLQlBIugRrGmGYDdH_M3TX1VweuVVXhDJSltlB3TlHJMI85ThKP3v1Dt3XXWH-d8gzGnEkRe4ocKdPUzjWQq11T-C_uFcHqoFkdNKuDZnXS7HduT8nduoLsd-NHqgdujkABAH8COWc4FuwbfqZ-sg</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xie, Guoyang</creator><creator>Wang, Jinbao</creator><creator>Liu, Jiaqi</creator><creator>Lyu, Jiayi</creator><creator>Liu, Yong</creator><creator>Wang, Chengjie</creator><creator>Zheng, Feng</creator><creator>Jin, Yaochu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5916-8965</orcidid><orcidid>https://orcid.org/0000-0001-8433-8153</orcidid><orcidid>https://orcid.org/0000-0002-2153-8411</orcidid><orcidid>https://orcid.org/0000-0003-1100-0631</orcidid><orcidid>https://orcid.org/0000-0003-4216-8090</orcidid><orcidid>https://orcid.org/0000-0002-1701-9141</orcidid></search><sort><creationdate>20240501</creationdate><title>IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing</title><author>Xie, Guoyang ; Wang, Jinbao ; Liu, Jiaqi ; Lyu, Jiayi ; Liu, Yong ; Wang, Chengjie ; Zheng, Feng ; Jin, Yaochu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d5ceea46a9b4621b1f70cc1cd419945df2456c0efdf983d165ea22149e2c333a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Image reconstruction</topic><topic>Inference algorithms</topic><topic>instance segmentation</topic><topic>Manufacturing</topic><topic>Noise measurement</topic><topic>Redesign</topic><topic>Source code</topic><topic>Training</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Guoyang</creatorcontrib><creatorcontrib>Wang, Jinbao</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Lyu, Jiayi</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Wang, Chengjie</creatorcontrib><creatorcontrib>Zheng, Feng</creatorcontrib><creatorcontrib>Jin, Yaochu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Guoyang</au><au>Wang, Jinbao</au><au>Liu, Jiaqi</au><au>Lyu, Jiayi</au><au>Liu, Yong</au><au>Wang, Chengjie</au><au>Zheng, Feng</au><au>Jin, Yaochu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>54</volume><issue>5</issue><spage>2720</spage><epage>2733</epage><pages>2720-2733</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38381632</pmid><doi>10.1109/TCYB.2024.3357213</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5916-8965</orcidid><orcidid>https://orcid.org/0000-0001-8433-8153</orcidid><orcidid>https://orcid.org/0000-0002-2153-8411</orcidid><orcidid>https://orcid.org/0000-0003-1100-0631</orcidid><orcidid>https://orcid.org/0000-0003-4216-8090</orcidid><orcidid>https://orcid.org/0000-0002-1701-9141</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2024-05, Vol.54 (5), p.2720-2733 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_2930474088 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anomalies Anomaly detection Benchmark testing Benchmarks Computer vision Feature extraction Image reconstruction Inference algorithms instance segmentation Manufacturing Noise measurement Redesign Source code Training unsupervised learning |
title | IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IM-IAD:%20Industrial%20Image%20Anomaly%20Detection%20Benchmark%20in%20Manufacturing&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Xie,%20Guoyang&rft.date=2024-05-01&rft.volume=54&rft.issue=5&rft.spage=2720&rft.epage=2733&rft.pages=2720-2733&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2024.3357213&rft_dat=%3Cproquest_RIE%3E3040043967%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040043967&rft_id=info:pmid/38381632&rft_ieee_id=10443076&rfr_iscdi=true |