IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing

Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2024-05, Vol.54 (5), p.2720-2733
Hauptverfasser: Xie, Guoyang, Wang, Jinbao, Liu, Jiaqi, Lyu, Jiayi, Liu, Yong, Wang, Chengjie, Zheng, Feng, Jin, Yaochu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2024.3357213