Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases
Electrocardiography (ECG), improved by artificial intelligence (AI), has become a potential technique for the precise diagnosis and treatment of cardiovascular disorders. The conventional ECG is a frequently used, inexpensive, and easily accessible test that offers important information about the ph...
Gespeichert in:
Veröffentlicht in: | Journal of electrocardiology 2024-03, Vol.83, p.30-40 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrocardiography (ECG), improved by artificial intelligence (AI), has become a potential technique for the precise diagnosis and treatment of cardiovascular disorders. The conventional ECG is a frequently used, inexpensive, and easily accessible test that offers important information about the physiological and anatomical state of the heart. However, the ECG can be interpreted differently by humans depending on the interpreter's level of training and experience, which could make diagnosis more difficult. Using AI, especially deep learning convolutional neural networks (CNNs), to look at single, continuous, and intermittent ECG leads that has led to fully automated AI models that can interpret the ECG like a human, possibly more accurately and consistently. These AI algorithms are effective non-invasive biomarkers for cardiovascular illnesses because they can identify subtle patterns and signals in the ECG that may not be readily apparent to human interpreters. The use of AI in ECG analysis has several benefits, including the quick and precise detection of problems like arrhythmias, silent cardiac illnesses, and left ventricular failure. It has the potential to help doctors with interpretation, diagnosis, risk assessment, and illness management. Aside from that, AI-enhanced ECGs have been demonstrated to boost the identification of heart failure and other cardiovascular disorders, particularly in emergency department settings, allowing for quicker and more precise treatment options. The use of AI in cardiology, however, has several limitations and obstacles, despite its potential. The effective implementation of AI-powered ECG analysis is limited by issues such as systematic bias. Biases based on age, gender, and race result from unbalanced datasets. A model's performance is impacted when diverse demographics are inadequately represented. Potentially disregarded age-related ECG variations may result from skewed age data in training sets. ECG patterns are affected by physiological differences between the sexes; a dataset that is inclined toward one sex may compromise the accuracy of the others. Genetic variations influence ECG readings, so racial diversity in datasets is significant. Furthermore, issues such as inadequate generalization, regulatory barriers, and interpretability concerns contribute to deployment difficulties. The lack of robustness in models when applied to disparate populations frequently hinders their practical applicability. The exhaus |
---|---|
ISSN: | 0022-0736 1532-8430 |
DOI: | 10.1016/j.jelectrocard.2024.01.006 |