Prediction of HER2 Expression in Gastric Adenocarcinoma Based On Preoperative Noninvasive Multimodal 18F-FDG PET/CT Imaging

This study aims to investigate the role of a flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) multimodal radiomics model in predicting the status of human epidermal growth factor receptor 2 (HER2) expression preoperatively in cases of gastric adenocarc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2024-08, Vol.31 (8), p.3200-3211
Hauptverfasser: Qin, Lilin, Chen, Wujie, Ye, Yuanxin, Yi, Heqing, Pang, Weiqiang, Long, Bin, Wang, Yun, Ye, Ting, Li, Linfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to investigate the role of a flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) multimodal radiomics model in predicting the status of human epidermal growth factor receptor 2 (HER2) expression preoperatively in cases of gastric adenocarcinoma. This retrospective study included 133 patients with gastric adenocarcinoma who were classified into training (n = 93) and validation (n = 40) cohorts in a ratio of 7:3. Features were selected using Least Absolute Shrinkage and Selection Operator and Extreme Gradient Boosting (XGBoost) methods; further, prediction models were constructed using logistic regression and XGBoost. These models were evaluated and validated using area under the curve (AUC), decision curves, and calibration curves to select the best-performing model. Six different models were established to predict HER2 expression. Among these, the comprehensive model, which integrates seven clinical features, one CT feature, and five PET features, demonstrated AUC values of 0.95 (95% confidence interval [CI]: 0.89-1.00) and 0.76 (95% CI: 0.52-1.00) in the training and validation cohorts, respectively. Compared with other models, this model exhibited a superior net benefit on the decision curve and demonstrated good alignment agreement with the observed values on the calibration curve. Based on these findings, we constructed a nomogram for visualizing the model, providing a noninvasive preoperative method for predicting HER2 expression. The preoperative 18F-FDG PET/CT multimodal radiomics model can effectively predict HER2 expression in patients with gastric adenocarcinoma, thereby guiding clinical decision-making and advancing the field of precision medicine.
ISSN:1076-6332
1878-4046
1878-4046
DOI:10.1016/j.acra.2024.01.022