Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space

Deep learning-based de novo molecular design has recently gained significant attention. While numerous DL-based generative models have been successfully developed for designing novel compounds, the majority of the generated molecules lack sufficiently novel scaffolds or high drug-like profiles. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-02, Vol.64 (4), p.1213-1228
Hauptverfasser: Wang, Mingyang, Wu, Zhengjian, Wang, Jike, Weng, Gaoqi, Kang, Yu, Pan, Peichen, Li, Dan, Deng, Yafeng, Yao, Xiaojun, Bing, Zhitong, Hsieh, Chang-Yu, Hou, Tingjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning-based de novo molecular design has recently gained significant attention. While numerous DL-based generative models have been successfully developed for designing novel compounds, the majority of the generated molecules lack sufficiently novel scaffolds or high drug-like profiles. The aforementioned issues may not be fully captured by commonly used metrics for the assessment of molecular generative models, such as novelty, diversity, and quantitative estimation of the drug-likeness score. To address these limitations, we proposed a genetic algorithm-guided generative model called GARel (genetic algorithm-based receptor-ligand interaction generator), a novel framework for training a DL-based generative model to produce drug-like molecules with novel scaffolds. To efficiently train the GARel model, we utilized dense net to update the parameters based on molecules with novel scaffolds and drug-like features. To demonstrate the capability of the GARel model, we used it to design inhibitors for three targets: AA2AR, EGFR, and SARS-Cov2. The results indicate that GARel-generated molecules feature more diverse and novel scaffolds and possess more desirable physicochemical properties and favorable docking scores. Compared with other generative models, GARel makes significant progress in balancing novelty and drug-likeness, providing a promising direction for the further development of DL-based de novo design methodology with potential impacts on drug discovery.
ISSN:1549-9596
1549-960X
1549-960X
DOI:10.1021/acs.jcim.3c01964