Geo-ecological, shoreline dynamic, and flooding impacts of Cyclonic Storm Mocha: A geospatial analysis

This research comprehensively assesses the aftermath of Cyclonic Storm Mocha, focusing on the coastal zones of Rakhine State and the Chittagong Division, spanning Myanmar and Bangladesh. The investigation emphasizes the impacts on coastal ecology, shoreline dynamics, flooding patterns, and meteorolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-03, Vol.917, p.170230-170230, Article 170230
Hauptverfasser: Mishra, Manoranjan, Guria, Rajkumar, Paul, Suman, Baraj, Biswaranjan, Santos, Celso Augusto Guimarães, dos Santos, Carlos Antonio Costa, Silva, Richarde Marques da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research comprehensively assesses the aftermath of Cyclonic Storm Mocha, focusing on the coastal zones of Rakhine State and the Chittagong Division, spanning Myanmar and Bangladesh. The investigation emphasizes the impacts on coastal ecology, shoreline dynamics, flooding patterns, and meteorological variations. Employed were multiple vegetation indices—Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Modified Vegetation Condition Index (mVCI), Disaster Vegetation Damage Index (DVDI), and Fractional Vegetation Cover (FVC)—to evaluate ecological consequences. The Digital Shoreline Assessment System (DSAS) aided in determining shoreline alterations pre- and post-cyclone. Soil exposure and flood extents were scrutinized using the Bare Soil Index (BSI) and Modified Normalized Difference Water Index (MNDWI), respectively. Additionally, the study encompassed an analysis of microclimatic variables, comparing meteorological data across pre- and post-cyclone periods. Findings indicate significant ecological impacts: an estimated 8985.46 km2 of dense vegetation (NDVI >0.6) was adversely affected. Post-cyclone, there was a discernible reduction in EVI values. The mean mVCI shifted negatively from −0.18 to −0.33, and the mean FVC decreased from 0.39 to 0.33. The DVDI underscored considerable vegetation damage in various areas, underscoring the cyclone's extensive impact. Meteorological analysis revealed a 245 % increase in rainfall (20.22 mm on May 14, 2023 compared to the May average of 5.86 mm), and significant increases in relative humidity (14 %) and wind speed (205 %). Erosion was observed along 74.60 % of the studied shoreline. These insights are pivotal for developing comprehensive strategies aimed at the rehabilitation and conservation of critical coastal ecosystems. They provide vital data for emergency response initiatives and offer resources for entities engaged in enhancing coastal resilience and protecting local community livelihoods. [Display omitted] •Cyclone Mocha's impact on ecology, coastlines, and climate in Rakhine & Chittagong•Employed NDVI, EVI, mVCI, DVDI, and FVC for post-cyclone vegetation analysis•Utilized DSAS for detailed pre- and post-cyclone shoreline change analysis•Analyzed soil exposure and water inundation using BSI and MNDWI•Detected key meteorological changes: surge in rainfall and wind speed
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.170230