Enhanced bacterial cellulose production in Gluconacetobacter xylinus by overexpression of two genes (bscC and bcsD) and a modified static culture

Bacterial cellulose (BC), a nanostructured material, is renowned for its excellent properties. However, its production by bacteria is costly due to low medium utilization and conversion rates. To enhance the yield of BC, this study aimed to increase BC yield through genetic modification, specificall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-03, Vol.260 (Pt 1), p.129552-129552, Article 129552
Hauptverfasser: Yang, Leyun, Zhu, Xinxin, Chen, Yong, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial cellulose (BC), a nanostructured material, is renowned for its excellent properties. However, its production by bacteria is costly due to low medium utilization and conversion rates. To enhance the yield of BC, this study aimed to increase BC yield through genetic modification, specifically by overexpressing bcsC and bcsD in Gluconacetobacter xylinus, and by developing a modified culture method to reduce medium viscosity by adding water during fermentation. As a result, BC yields of 5.4, 6.2, and 6.8 g/L were achieved from strains overexpressing genes bcsC, bcsD, and bcsCD, significantly surpassing the yield of 2.2 g/L from wild-type (WT) strains. In the modified culture, the BC yields of all four strains increased by >1 g/L with the addition of 20 mL of water during fermentation. Upon comparing the properties of BC, minimal differences were observed between the WT and pbcsC strains, as well as between the static and modified cultures. In contrast, BC produced by strains overexpressing bcsD had a denser microstructural network and exhibited demonstrated higher tensile strength and elongation-to-break. Compared to WT, BC from bcsD overexpressed strains also displayed enhanced crystallinity, higher degree of polymerization and improved thermal stability.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.129552