Time-reversal and parity-time symmetry breaking in non-Hermitian field theories

We study time-reversal symmetry breaking in non-Hermitian fluctuating field theories with conserved dynamics, comprising the mesoscopic descriptions of a wide range of nonequilibrium phenomena. They exhibit continuous parity-time (PT) symmetry-breaking phase transitions to dynamical phases. For two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2023-12, Vol.108 (6-1), p.064123-064123, Article 064123
Hauptverfasser: Suchanek, Thomas, Kroy, Klaus, Loos, Sarah A M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study time-reversal symmetry breaking in non-Hermitian fluctuating field theories with conserved dynamics, comprising the mesoscopic descriptions of a wide range of nonequilibrium phenomena. They exhibit continuous parity-time (PT) symmetry-breaking phase transitions to dynamical phases. For two concrete transition scenarios, exclusive to non-Hermitian dynamics, namely, oscillatory instabilities and critical exceptional points, a low-noise expansion exposes a pretransitional surge of the mesoscale (informatic) entropy production rate, inside the static phases. Its scaling in the susceptibility contrasts conventional critical points (such as second-order phase transitions), where the susceptibility also diverges, but the entropy production generally remains finite. The difference can be attributed to active fluctuations in the wavelengths that become unstable. For critical exceptional points, we identify the coupling of eigenmodes as the entropy-generating mechanism, causing a drastic noise amplification in the Goldstone mode.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.108.064123