Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis
The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (23), p.e2310468-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | e2310468 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Zhang, Shuai Tao, Zheng Xu, Mingyang Kan, Lun Guo, Chuanpan Liu, Jiameng He, Linghao Du, Miao Zhang, Zhihong |
description | The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism.
Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability. |
doi_str_mv | 10.1002/smll.202310468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929029218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064726311</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2668-7be7eb95f3bf49bbdeb47ac630de3696522b7ea250b0b9a6c80ab4959fe5ec433</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhiMEEqWwMltiYWnxJXHiEYVCkYKKKMyWnZxQV0lc7BSUrY_AwBP2SUhV1IHlXKTvHP36guCS4DHBmN74uqrGFFNGcMiTo2BAOGEjnlBxfJgJPg3OvF9izAgN40Hg5qZ5r2C7-b5tbY1Su_3ZzEI0Ny14NKk1FAUUyDRIoTsoIW_N5w5-MfkCPVtn1x6lymnboEx14FBpHZqUpckNNC2a0hlFk6o_c9Z3TbsAb_x5cFKqysPFXx8Gb_eT13Q6ymYPj-ltNlpRzpNRrCEGLaKS6TIUWhegw1jlnOECGBc8olTHoGiENdZC8TzBSociEiVEkIeMDYPr_d-Vsx9r8K2sjc-hqlQDfW5JBRW4LyTp0at_6NKuXdOnkwzzMKacEdJTYk99mQo6uXKmVq6TBMudf7nzLw_-5fwpyw4b-wXN3H6V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064726311</pqid></control><display><type>article</type><title>Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Shuai ; Tao, Zheng ; Xu, Mingyang ; Kan, Lun ; Guo, Chuanpan ; Liu, Jiameng ; He, Linghao ; Du, Miao ; Zhang, Zhihong</creator><creatorcontrib>Zhang, Shuai ; Tao, Zheng ; Xu, Mingyang ; Kan, Lun ; Guo, Chuanpan ; Liu, Jiameng ; He, Linghao ; Du, Miao ; Zhang, Zhihong</creatorcontrib><description>The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism.
Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310468</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>accordion‐like Zn‐MOF ; Anthraquinones ; Carbon ; Chemical reduction ; Co─O4 single atom catalyst ; Density functional theory ; detective‐rich carbon layer ; Electrocatalysts ; Fourier transforms ; Graphene ; Hydrogen peroxide ; hydrogen peroxide electrosynthesis ; Hydrogen production ; Infrared reflection ; Infrared spectra ; oxygen reduction reaction ; Oxygen reduction reactions ; Rhodamine</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310468-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5888-4107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202310468$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202310468$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Tao, Zheng</creatorcontrib><creatorcontrib>Xu, Mingyang</creatorcontrib><creatorcontrib>Kan, Lun</creatorcontrib><creatorcontrib>Guo, Chuanpan</creatorcontrib><creatorcontrib>Liu, Jiameng</creatorcontrib><creatorcontrib>He, Linghao</creatorcontrib><creatorcontrib>Du, Miao</creatorcontrib><creatorcontrib>Zhang, Zhihong</creatorcontrib><title>Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism.
Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability.</description><subject>accordion‐like Zn‐MOF</subject><subject>Anthraquinones</subject><subject>Carbon</subject><subject>Chemical reduction</subject><subject>Co─O4 single atom catalyst</subject><subject>Density functional theory</subject><subject>detective‐rich carbon layer</subject><subject>Electrocatalysts</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Hydrogen peroxide</subject><subject>hydrogen peroxide electrosynthesis</subject><subject>Hydrogen production</subject><subject>Infrared reflection</subject><subject>Infrared spectra</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Rhodamine</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkLtOwzAUhiMEEqWwMltiYWnxJXHiEYVCkYKKKMyWnZxQV0lc7BSUrY_AwBP2SUhV1IHlXKTvHP36guCS4DHBmN74uqrGFFNGcMiTo2BAOGEjnlBxfJgJPg3OvF9izAgN40Hg5qZ5r2C7-b5tbY1Su_3ZzEI0Ny14NKk1FAUUyDRIoTsoIW_N5w5-MfkCPVtn1x6lymnboEx14FBpHZqUpckNNC2a0hlFk6o_c9Z3TbsAb_x5cFKqysPFXx8Gb_eT13Q6ymYPj-ltNlpRzpNRrCEGLaKS6TIUWhegw1jlnOECGBc8olTHoGiENdZC8TzBSociEiVEkIeMDYPr_d-Vsx9r8K2sjc-hqlQDfW5JBRW4LyTp0at_6NKuXdOnkwzzMKacEdJTYk99mQo6uXKmVq6TBMudf7nzLw_-5fwpyw4b-wXN3H6V</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Shuai</creator><creator>Tao, Zheng</creator><creator>Xu, Mingyang</creator><creator>Kan, Lun</creator><creator>Guo, Chuanpan</creator><creator>Liu, Jiameng</creator><creator>He, Linghao</creator><creator>Du, Miao</creator><creator>Zhang, Zhihong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5888-4107</orcidid></search><sort><creationdate>20240601</creationdate><title>Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis</title><author>Zhang, Shuai ; Tao, Zheng ; Xu, Mingyang ; Kan, Lun ; Guo, Chuanpan ; Liu, Jiameng ; He, Linghao ; Du, Miao ; Zhang, Zhihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2668-7be7eb95f3bf49bbdeb47ac630de3696522b7ea250b0b9a6c80ab4959fe5ec433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accordion‐like Zn‐MOF</topic><topic>Anthraquinones</topic><topic>Carbon</topic><topic>Chemical reduction</topic><topic>Co─O4 single atom catalyst</topic><topic>Density functional theory</topic><topic>detective‐rich carbon layer</topic><topic>Electrocatalysts</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Hydrogen peroxide</topic><topic>hydrogen peroxide electrosynthesis</topic><topic>Hydrogen production</topic><topic>Infrared reflection</topic><topic>Infrared spectra</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Rhodamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Tao, Zheng</creatorcontrib><creatorcontrib>Xu, Mingyang</creatorcontrib><creatorcontrib>Kan, Lun</creatorcontrib><creatorcontrib>Guo, Chuanpan</creatorcontrib><creatorcontrib>Liu, Jiameng</creatorcontrib><creatorcontrib>He, Linghao</creatorcontrib><creatorcontrib>Du, Miao</creatorcontrib><creatorcontrib>Zhang, Zhihong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuai</au><au>Tao, Zheng</au><au>Xu, Mingyang</au><au>Kan, Lun</au><au>Guo, Chuanpan</au><au>Liu, Jiameng</au><au>He, Linghao</au><au>Du, Miao</au><au>Zhang, Zhihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>23</issue><spage>e2310468</spage><epage>n/a</epage><pages>e2310468-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism.
Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202310468</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5888-4107</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310468-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929029218 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | accordion‐like Zn‐MOF Anthraquinones Carbon Chemical reduction Co─O4 single atom catalyst Density functional theory detective‐rich carbon layer Electrocatalysts Fourier transforms Graphene Hydrogen peroxide hydrogen peroxide electrosynthesis Hydrogen production Infrared reflection Infrared spectra oxygen reduction reaction Oxygen reduction reactions Rhodamine |
title | Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Atom%20Co%E2%94%80O4%20Sites%20Embedded%20in%20a%20Defective%E2%80%90Rich%20Porous%20Carbon%20Layer%20for%20Efficient%20H2O2%20Electrosynthesis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Shuai&rft.date=2024-06-01&rft.volume=20&rft.issue=23&rft.spage=e2310468&rft.epage=n/a&rft.pages=e2310468-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310468&rft_dat=%3Cproquest_wiley%3E3064726311%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064726311&rft_id=info:pmid/&rfr_iscdi=true |