Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis

The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (23), p.e2310468-n/a
Hauptverfasser: Zhang, Shuai, Tao, Zheng, Xu, Mingyang, Kan, Lun, Guo, Chuanpan, Liu, Jiameng, He, Linghao, Du, Miao, Zhang, Zhihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2310468
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Zhang, Shuai
Tao, Zheng
Xu, Mingyang
Kan, Lun
Guo, Chuanpan
Liu, Jiameng
He, Linghao
Du, Miao
Zhang, Zhihong
description The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism. Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability.
doi_str_mv 10.1002/smll.202310468
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929029218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064726311</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2668-7be7eb95f3bf49bbdeb47ac630de3696522b7ea250b0b9a6c80ab4959fe5ec433</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhiMEEqWwMltiYWnxJXHiEYVCkYKKKMyWnZxQV0lc7BSUrY_AwBP2SUhV1IHlXKTvHP36guCS4DHBmN74uqrGFFNGcMiTo2BAOGEjnlBxfJgJPg3OvF9izAgN40Hg5qZ5r2C7-b5tbY1Su_3ZzEI0Ny14NKk1FAUUyDRIoTsoIW_N5w5-MfkCPVtn1x6lymnboEx14FBpHZqUpckNNC2a0hlFk6o_c9Z3TbsAb_x5cFKqysPFXx8Gb_eT13Q6ymYPj-ltNlpRzpNRrCEGLaKS6TIUWhegw1jlnOECGBc8olTHoGiENdZC8TzBSociEiVEkIeMDYPr_d-Vsx9r8K2sjc-hqlQDfW5JBRW4LyTp0at_6NKuXdOnkwzzMKacEdJTYk99mQo6uXKmVq6TBMudf7nzLw_-5fwpyw4b-wXN3H6V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064726311</pqid></control><display><type>article</type><title>Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Shuai ; Tao, Zheng ; Xu, Mingyang ; Kan, Lun ; Guo, Chuanpan ; Liu, Jiameng ; He, Linghao ; Du, Miao ; Zhang, Zhihong</creator><creatorcontrib>Zhang, Shuai ; Tao, Zheng ; Xu, Mingyang ; Kan, Lun ; Guo, Chuanpan ; Liu, Jiameng ; He, Linghao ; Du, Miao ; Zhang, Zhihong</creatorcontrib><description>The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism. Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310468</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>accordion‐like Zn‐MOF ; Anthraquinones ; Carbon ; Chemical reduction ; Co─O4 single atom catalyst ; Density functional theory ; detective‐rich carbon layer ; Electrocatalysts ; Fourier transforms ; Graphene ; Hydrogen peroxide ; hydrogen peroxide electrosynthesis ; Hydrogen production ; Infrared reflection ; Infrared spectra ; oxygen reduction reaction ; Oxygen reduction reactions ; Rhodamine</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310468-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5888-4107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202310468$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202310468$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Tao, Zheng</creatorcontrib><creatorcontrib>Xu, Mingyang</creatorcontrib><creatorcontrib>Kan, Lun</creatorcontrib><creatorcontrib>Guo, Chuanpan</creatorcontrib><creatorcontrib>Liu, Jiameng</creatorcontrib><creatorcontrib>He, Linghao</creatorcontrib><creatorcontrib>Du, Miao</creatorcontrib><creatorcontrib>Zhang, Zhihong</creatorcontrib><title>Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism. Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability.</description><subject>accordion‐like Zn‐MOF</subject><subject>Anthraquinones</subject><subject>Carbon</subject><subject>Chemical reduction</subject><subject>Co─O4 single atom catalyst</subject><subject>Density functional theory</subject><subject>detective‐rich carbon layer</subject><subject>Electrocatalysts</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Hydrogen peroxide</subject><subject>hydrogen peroxide electrosynthesis</subject><subject>Hydrogen production</subject><subject>Infrared reflection</subject><subject>Infrared spectra</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Rhodamine</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkLtOwzAUhiMEEqWwMltiYWnxJXHiEYVCkYKKKMyWnZxQV0lc7BSUrY_AwBP2SUhV1IHlXKTvHP36guCS4DHBmN74uqrGFFNGcMiTo2BAOGEjnlBxfJgJPg3OvF9izAgN40Hg5qZ5r2C7-b5tbY1Su_3ZzEI0Ny14NKk1FAUUyDRIoTsoIW_N5w5-MfkCPVtn1x6lymnboEx14FBpHZqUpckNNC2a0hlFk6o_c9Z3TbsAb_x5cFKqysPFXx8Gb_eT13Q6ymYPj-ltNlpRzpNRrCEGLaKS6TIUWhegw1jlnOECGBc8olTHoGiENdZC8TzBSociEiVEkIeMDYPr_d-Vsx9r8K2sjc-hqlQDfW5JBRW4LyTp0at_6NKuXdOnkwzzMKacEdJTYk99mQo6uXKmVq6TBMudf7nzLw_-5fwpyw4b-wXN3H6V</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Shuai</creator><creator>Tao, Zheng</creator><creator>Xu, Mingyang</creator><creator>Kan, Lun</creator><creator>Guo, Chuanpan</creator><creator>Liu, Jiameng</creator><creator>He, Linghao</creator><creator>Du, Miao</creator><creator>Zhang, Zhihong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5888-4107</orcidid></search><sort><creationdate>20240601</creationdate><title>Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis</title><author>Zhang, Shuai ; Tao, Zheng ; Xu, Mingyang ; Kan, Lun ; Guo, Chuanpan ; Liu, Jiameng ; He, Linghao ; Du, Miao ; Zhang, Zhihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2668-7be7eb95f3bf49bbdeb47ac630de3696522b7ea250b0b9a6c80ab4959fe5ec433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accordion‐like Zn‐MOF</topic><topic>Anthraquinones</topic><topic>Carbon</topic><topic>Chemical reduction</topic><topic>Co─O4 single atom catalyst</topic><topic>Density functional theory</topic><topic>detective‐rich carbon layer</topic><topic>Electrocatalysts</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Hydrogen peroxide</topic><topic>hydrogen peroxide electrosynthesis</topic><topic>Hydrogen production</topic><topic>Infrared reflection</topic><topic>Infrared spectra</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Rhodamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Tao, Zheng</creatorcontrib><creatorcontrib>Xu, Mingyang</creatorcontrib><creatorcontrib>Kan, Lun</creatorcontrib><creatorcontrib>Guo, Chuanpan</creatorcontrib><creatorcontrib>Liu, Jiameng</creatorcontrib><creatorcontrib>He, Linghao</creatorcontrib><creatorcontrib>Du, Miao</creatorcontrib><creatorcontrib>Zhang, Zhihong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuai</au><au>Tao, Zheng</au><au>Xu, Mingyang</au><au>Kan, Lun</au><au>Guo, Chuanpan</au><au>Liu, Jiameng</au><au>He, Linghao</au><au>Du, Miao</au><au>Zhang, Zhihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>20</volume><issue>23</issue><spage>e2310468</spage><epage>n/a</epage><pages>e2310468-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism. Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202310468</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5888-4107</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-06, Vol.20 (23), p.e2310468-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2929029218
source Wiley Online Library Journals Frontfile Complete
subjects accordion‐like Zn‐MOF
Anthraquinones
Carbon
Chemical reduction
Co─O4 single atom catalyst
Density functional theory
detective‐rich carbon layer
Electrocatalysts
Fourier transforms
Graphene
Hydrogen peroxide
hydrogen peroxide electrosynthesis
Hydrogen production
Infrared reflection
Infrared spectra
oxygen reduction reaction
Oxygen reduction reactions
Rhodamine
title Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%E2%80%90Atom%20Co%E2%94%80O4%20Sites%20Embedded%20in%20a%20Defective%E2%80%90Rich%20Porous%20Carbon%20Layer%20for%20Efficient%20H2O2%20Electrosynthesis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Shuai&rft.date=2024-06-01&rft.volume=20&rft.issue=23&rft.spage=e2310468&rft.epage=n/a&rft.pages=e2310468-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310468&rft_dat=%3Cproquest_wiley%3E3064726311%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064726311&rft_id=info:pmid/&rfr_iscdi=true