Single‐Atom Co─O4 Sites Embedded in a Defective‐Rich Porous Carbon Layer for Efficient H2O2 Electrosynthesis

The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (23), p.e2310468-n/a
Hauptverfasser: Zhang, Shuai, Tao, Zheng, Xu, Mingyang, Kan, Lun, Guo, Chuanpan, Liu, Jiameng, He, Linghao, Du, Miao, Zhang, Zhihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The production of hydrogen peroxide (H2O2) via the two‐electron electrochemical oxygen reduction reaction (2e− ORR) is an essential alteration in the current anthraquinone‐based method. Herein, a single‐atom Co─O4 electrocatalyst is embedded in a defective and porous graphene‐like carbon layer (Co─O4@PC). The Co─O4@PC electrocatalyst shows promising potential in H2O2 electrosynthesis via 2e− ORR, providing a high H2O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2O2. In situ surface‐sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d‐band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H‐cell and flow cell assembled using Co─O4@PC as the cathode present long‐term stability and high efficiency for H2O2 production. Particularly, a high H2O2 production rate of 0.25 mol g−1cat h−1 at 0.6 V can be obtained by the flow cell. The in situ‐generated H2O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism. Using accordion‐like Zn‐MOF as a precursor affords porous carbon nanosheets with large specific surface area and uniformly dispersed active sites. Herein, a single atom Co─O4@PC SAC is developed for the first time application in H2O2 electrosynthesis. The Co─O4 on carbon nanosheet with defective structure demonstrates the impressive H2O2 selectivity and stability.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202310468