Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission
Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental resear...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-04, Vol.63 (14), p.e202319650-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | e202319650 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Zhang, Zhi‐Xu Wang, He Ni, Hao‐Fei Wang, Na Wang, Chang‐Feng Huang, Pei‐Zhi Jia, Qiang‐Qiang Teri, Gele Fu, Da‐Wei Zhang, Yujian An, Zhongfu Zhang, Yi |
description | Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture. |
doi_str_mv | 10.1002/anie.202319650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928856627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928856627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-e12d336b252ebb97502dd8d0df6aee1356928cda88e507cfa681fc8a131d2aa93</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURgdRbK1uXUrAjZvU-clkJstQWlsodqNuwyRzU1PSpM4klO58BJ_RJ3FKakU3ru7lcr7D5UPomuAhwZjeq6qAIcWUkSjk-AT1CafEZ0KwU7cHjPlCctJDF9auHC8lDs9Rj0kqOJWsj14WZukc2ef7x6yqu92b7lJTaG8CxtRQQtYYd1SV9uKqKfJf123RvHpx3oBZlvXWG68La4u6ukRnuSotXB3mAD1Pxk-jqT9fPMxG8dzPmGDYB0I1Y2FKOYU0jQTHVGupsc5DBUAYDyMqM62kBI5FlqtQkjyTijCiqVIRG6C7zrsx9VsLtkncAxmUpaqgbm1CXV7yMKTCobd_0FXdmsp95yjBWMCjIHDUsKMyU1trIE82plgrs0sITvaNJ_vGk2PjLnBz0LbpGvQR_67YAVEHbIsSdv_okvhxNv6RfwFNmo5-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973345944</pqid></control><display><type>article</type><title>Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission</title><source>Wiley Online Library All Journals</source><creator>Zhang, Zhi‐Xu ; Wang, He ; Ni, Hao‐Fei ; Wang, Na ; Wang, Chang‐Feng ; Huang, Pei‐Zhi ; Jia, Qiang‐Qiang ; Teri, Gele ; Fu, Da‐Wei ; Zhang, Yujian ; An, Zhongfu ; Zhang, Yi</creator><creatorcontrib>Zhang, Zhi‐Xu ; Wang, He ; Ni, Hao‐Fei ; Wang, Na ; Wang, Chang‐Feng ; Huang, Pei‐Zhi ; Jia, Qiang‐Qiang ; Teri, Gele ; Fu, Da‐Wei ; Zhang, Yujian ; An, Zhongfu ; Zhang, Yi</creatorcontrib><description>Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202319650</identifier><identifier>PMID: 38275283</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Afterglow Emission ; Afterglows ; Antiferroelectricity ; Antiferroelectrics ; Curie temperature ; Data storage ; Emission ; Emissions ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Hybrid Perovskite ; Multitasking ; Optoelectronic devices ; Photoluminescence</subject><ispartof>Angewandte Chemie International Edition, 2024-04, Vol.63 (14), p.e202319650-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-e12d336b252ebb97502dd8d0df6aee1356928cda88e507cfa681fc8a131d2aa93</citedby><cites>FETCH-LOGICAL-c3730-e12d336b252ebb97502dd8d0df6aee1356928cda88e507cfa681fc8a131d2aa93</cites><orcidid>0000-0002-6375-1712 ; 0000-0001-7826-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202319650$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202319650$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38275283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhi‐Xu</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Ni, Hao‐Fei</creatorcontrib><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Wang, Chang‐Feng</creatorcontrib><creatorcontrib>Huang, Pei‐Zhi</creatorcontrib><creatorcontrib>Jia, Qiang‐Qiang</creatorcontrib><creatorcontrib>Teri, Gele</creatorcontrib><creatorcontrib>Fu, Da‐Wei</creatorcontrib><creatorcontrib>Zhang, Yujian</creatorcontrib><creatorcontrib>An, Zhongfu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><title>Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture.</description><subject>Afterglow Emission</subject><subject>Afterglows</subject><subject>Antiferroelectricity</subject><subject>Antiferroelectrics</subject><subject>Curie temperature</subject><subject>Data storage</subject><subject>Emission</subject><subject>Emissions</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Hybrid Perovskite</subject><subject>Multitasking</subject><subject>Optoelectronic devices</subject><subject>Photoluminescence</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AURgdRbK1uXUrAjZvU-clkJstQWlsodqNuwyRzU1PSpM4klO58BJ_RJ3FKakU3ru7lcr7D5UPomuAhwZjeq6qAIcWUkSjk-AT1CafEZ0KwU7cHjPlCctJDF9auHC8lDs9Rj0kqOJWsj14WZukc2ef7x6yqu92b7lJTaG8CxtRQQtYYd1SV9uKqKfJf123RvHpx3oBZlvXWG68La4u6ukRnuSotXB3mAD1Pxk-jqT9fPMxG8dzPmGDYB0I1Y2FKOYU0jQTHVGupsc5DBUAYDyMqM62kBI5FlqtQkjyTijCiqVIRG6C7zrsx9VsLtkncAxmUpaqgbm1CXV7yMKTCobd_0FXdmsp95yjBWMCjIHDUsKMyU1trIE82plgrs0sITvaNJ_vGk2PjLnBz0LbpGvQR_67YAVEHbIsSdv_okvhxNv6RfwFNmo5-</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Zhang, Zhi‐Xu</creator><creator>Wang, He</creator><creator>Ni, Hao‐Fei</creator><creator>Wang, Na</creator><creator>Wang, Chang‐Feng</creator><creator>Huang, Pei‐Zhi</creator><creator>Jia, Qiang‐Qiang</creator><creator>Teri, Gele</creator><creator>Fu, Da‐Wei</creator><creator>Zhang, Yujian</creator><creator>An, Zhongfu</creator><creator>Zhang, Yi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6375-1712</orcidid><orcidid>https://orcid.org/0000-0001-7826-8064</orcidid></search><sort><creationdate>20240402</creationdate><title>Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission</title><author>Zhang, Zhi‐Xu ; Wang, He ; Ni, Hao‐Fei ; Wang, Na ; Wang, Chang‐Feng ; Huang, Pei‐Zhi ; Jia, Qiang‐Qiang ; Teri, Gele ; Fu, Da‐Wei ; Zhang, Yujian ; An, Zhongfu ; Zhang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-e12d336b252ebb97502dd8d0df6aee1356928cda88e507cfa681fc8a131d2aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Afterglow Emission</topic><topic>Afterglows</topic><topic>Antiferroelectricity</topic><topic>Antiferroelectrics</topic><topic>Curie temperature</topic><topic>Data storage</topic><topic>Emission</topic><topic>Emissions</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Hybrid Perovskite</topic><topic>Multitasking</topic><topic>Optoelectronic devices</topic><topic>Photoluminescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhi‐Xu</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Ni, Hao‐Fei</creatorcontrib><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Wang, Chang‐Feng</creatorcontrib><creatorcontrib>Huang, Pei‐Zhi</creatorcontrib><creatorcontrib>Jia, Qiang‐Qiang</creatorcontrib><creatorcontrib>Teri, Gele</creatorcontrib><creatorcontrib>Fu, Da‐Wei</creatorcontrib><creatorcontrib>Zhang, Yujian</creatorcontrib><creatorcontrib>An, Zhongfu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhi‐Xu</au><au>Wang, He</au><au>Ni, Hao‐Fei</au><au>Wang, Na</au><au>Wang, Chang‐Feng</au><au>Huang, Pei‐Zhi</au><au>Jia, Qiang‐Qiang</au><au>Teri, Gele</au><au>Fu, Da‐Wei</au><au>Zhang, Yujian</au><au>An, Zhongfu</au><au>Zhang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-04-02</date><risdate>2024</risdate><volume>63</volume><issue>14</issue><spage>e202319650</spage><epage>n/a</epage><pages>e202319650-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38275283</pmid><doi>10.1002/anie.202319650</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6375-1712</orcidid><orcidid>https://orcid.org/0000-0001-7826-8064</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-04, Vol.63 (14), p.e202319650-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2928856627 |
source | Wiley Online Library All Journals |
subjects | Afterglow Emission Afterglows Antiferroelectricity Antiferroelectrics Curie temperature Data storage Emission Emissions Ferroelectric materials Ferroelectricity Ferroelectrics Hybrid Perovskite Multitasking Optoelectronic devices Photoluminescence |
title | Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%E2%80%90Inorganic%20Hybrid%20Ferroelectric%20and%20Antiferroelectric%20with%20Afterglow%20Emission&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Zhi%E2%80%90Xu&rft.date=2024-04-02&rft.volume=63&rft.issue=14&rft.spage=e202319650&rft.epage=n/a&rft.pages=e202319650-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202319650&rft_dat=%3Cproquest_cross%3E2928856627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973345944&rft_id=info:pmid/38275283&rfr_iscdi=true |