Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission

Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental resear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-04, Vol.63 (14), p.e202319650-n/a
Hauptverfasser: Zhang, Zhi‐Xu, Wang, He, Ni, Hao‐Fei, Wang, Na, Wang, Chang‐Feng, Huang, Pei‐Zhi, Jia, Qiang‐Qiang, Teri, Gele, Fu, Da‐Wei, Zhang, Yujian, An, Zhongfu, Zhang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e202319650
container_title Angewandte Chemie International Edition
container_volume 63
creator Zhang, Zhi‐Xu
Wang, He
Ni, Hao‐Fei
Wang, Na
Wang, Chang‐Feng
Huang, Pei‐Zhi
Jia, Qiang‐Qiang
Teri, Gele
Fu, Da‐Wei
Zhang, Yujian
An, Zhongfu
Zhang, Yi
description Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities. Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture.
doi_str_mv 10.1002/anie.202319650
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928856627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928856627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-e12d336b252ebb97502dd8d0df6aee1356928cda88e507cfa681fc8a131d2aa93</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURgdRbK1uXUrAjZvU-clkJstQWlsodqNuwyRzU1PSpM4klO58BJ_RJ3FKakU3ru7lcr7D5UPomuAhwZjeq6qAIcWUkSjk-AT1CafEZ0KwU7cHjPlCctJDF9auHC8lDs9Rj0kqOJWsj14WZukc2ef7x6yqu92b7lJTaG8CxtRQQtYYd1SV9uKqKfJf123RvHpx3oBZlvXWG68La4u6ukRnuSotXB3mAD1Pxk-jqT9fPMxG8dzPmGDYB0I1Y2FKOYU0jQTHVGupsc5DBUAYDyMqM62kBI5FlqtQkjyTijCiqVIRG6C7zrsx9VsLtkncAxmUpaqgbm1CXV7yMKTCobd_0FXdmsp95yjBWMCjIHDUsKMyU1trIE82plgrs0sITvaNJ_vGk2PjLnBz0LbpGvQR_67YAVEHbIsSdv_okvhxNv6RfwFNmo5-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973345944</pqid></control><display><type>article</type><title>Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission</title><source>Wiley Online Library All Journals</source><creator>Zhang, Zhi‐Xu ; Wang, He ; Ni, Hao‐Fei ; Wang, Na ; Wang, Chang‐Feng ; Huang, Pei‐Zhi ; Jia, Qiang‐Qiang ; Teri, Gele ; Fu, Da‐Wei ; Zhang, Yujian ; An, Zhongfu ; Zhang, Yi</creator><creatorcontrib>Zhang, Zhi‐Xu ; Wang, He ; Ni, Hao‐Fei ; Wang, Na ; Wang, Chang‐Feng ; Huang, Pei‐Zhi ; Jia, Qiang‐Qiang ; Teri, Gele ; Fu, Da‐Wei ; Zhang, Yujian ; An, Zhongfu ; Zhang, Yi</creatorcontrib><description>Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities. Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202319650</identifier><identifier>PMID: 38275283</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Afterglow Emission ; Afterglows ; Antiferroelectricity ; Antiferroelectrics ; Curie temperature ; Data storage ; Emission ; Emissions ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Hybrid Perovskite ; Multitasking ; Optoelectronic devices ; Photoluminescence</subject><ispartof>Angewandte Chemie International Edition, 2024-04, Vol.63 (14), p.e202319650-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-e12d336b252ebb97502dd8d0df6aee1356928cda88e507cfa681fc8a131d2aa93</citedby><cites>FETCH-LOGICAL-c3730-e12d336b252ebb97502dd8d0df6aee1356928cda88e507cfa681fc8a131d2aa93</cites><orcidid>0000-0002-6375-1712 ; 0000-0001-7826-8064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202319650$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202319650$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38275283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhi‐Xu</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Ni, Hao‐Fei</creatorcontrib><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Wang, Chang‐Feng</creatorcontrib><creatorcontrib>Huang, Pei‐Zhi</creatorcontrib><creatorcontrib>Jia, Qiang‐Qiang</creatorcontrib><creatorcontrib>Teri, Gele</creatorcontrib><creatorcontrib>Fu, Da‐Wei</creatorcontrib><creatorcontrib>Zhang, Yujian</creatorcontrib><creatorcontrib>An, Zhongfu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><title>Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities. Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture.</description><subject>Afterglow Emission</subject><subject>Afterglows</subject><subject>Antiferroelectricity</subject><subject>Antiferroelectrics</subject><subject>Curie temperature</subject><subject>Data storage</subject><subject>Emission</subject><subject>Emissions</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Hybrid Perovskite</subject><subject>Multitasking</subject><subject>Optoelectronic devices</subject><subject>Photoluminescence</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AURgdRbK1uXUrAjZvU-clkJstQWlsodqNuwyRzU1PSpM4klO58BJ_RJ3FKakU3ru7lcr7D5UPomuAhwZjeq6qAIcWUkSjk-AT1CafEZ0KwU7cHjPlCctJDF9auHC8lDs9Rj0kqOJWsj14WZukc2ef7x6yqu92b7lJTaG8CxtRQQtYYd1SV9uKqKfJf123RvHpx3oBZlvXWG68La4u6ukRnuSotXB3mAD1Pxk-jqT9fPMxG8dzPmGDYB0I1Y2FKOYU0jQTHVGupsc5DBUAYDyMqM62kBI5FlqtQkjyTijCiqVIRG6C7zrsx9VsLtkncAxmUpaqgbm1CXV7yMKTCobd_0FXdmsp95yjBWMCjIHDUsKMyU1trIE82plgrs0sITvaNJ_vGk2PjLnBz0LbpGvQR_67YAVEHbIsSdv_okvhxNv6RfwFNmo5-</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Zhang, Zhi‐Xu</creator><creator>Wang, He</creator><creator>Ni, Hao‐Fei</creator><creator>Wang, Na</creator><creator>Wang, Chang‐Feng</creator><creator>Huang, Pei‐Zhi</creator><creator>Jia, Qiang‐Qiang</creator><creator>Teri, Gele</creator><creator>Fu, Da‐Wei</creator><creator>Zhang, Yujian</creator><creator>An, Zhongfu</creator><creator>Zhang, Yi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6375-1712</orcidid><orcidid>https://orcid.org/0000-0001-7826-8064</orcidid></search><sort><creationdate>20240402</creationdate><title>Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission</title><author>Zhang, Zhi‐Xu ; Wang, He ; Ni, Hao‐Fei ; Wang, Na ; Wang, Chang‐Feng ; Huang, Pei‐Zhi ; Jia, Qiang‐Qiang ; Teri, Gele ; Fu, Da‐Wei ; Zhang, Yujian ; An, Zhongfu ; Zhang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-e12d336b252ebb97502dd8d0df6aee1356928cda88e507cfa681fc8a131d2aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Afterglow Emission</topic><topic>Afterglows</topic><topic>Antiferroelectricity</topic><topic>Antiferroelectrics</topic><topic>Curie temperature</topic><topic>Data storage</topic><topic>Emission</topic><topic>Emissions</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Hybrid Perovskite</topic><topic>Multitasking</topic><topic>Optoelectronic devices</topic><topic>Photoluminescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhi‐Xu</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Ni, Hao‐Fei</creatorcontrib><creatorcontrib>Wang, Na</creatorcontrib><creatorcontrib>Wang, Chang‐Feng</creatorcontrib><creatorcontrib>Huang, Pei‐Zhi</creatorcontrib><creatorcontrib>Jia, Qiang‐Qiang</creatorcontrib><creatorcontrib>Teri, Gele</creatorcontrib><creatorcontrib>Fu, Da‐Wei</creatorcontrib><creatorcontrib>Zhang, Yujian</creatorcontrib><creatorcontrib>An, Zhongfu</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhi‐Xu</au><au>Wang, He</au><au>Ni, Hao‐Fei</au><au>Wang, Na</au><au>Wang, Chang‐Feng</au><au>Huang, Pei‐Zhi</au><au>Jia, Qiang‐Qiang</au><au>Teri, Gele</au><au>Fu, Da‐Wei</au><au>Zhang, Yujian</au><au>An, Zhongfu</au><au>Zhang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-04-02</date><risdate>2024</risdate><volume>63</volume><issue>14</issue><spage>e202319650</spage><epage>n/a</epage><pages>e202319650-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities. Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38275283</pmid><doi>10.1002/anie.202319650</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6375-1712</orcidid><orcidid>https://orcid.org/0000-0001-7826-8064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-04, Vol.63 (14), p.e202319650-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2928856627
source Wiley Online Library All Journals
subjects Afterglow Emission
Afterglows
Antiferroelectricity
Antiferroelectrics
Curie temperature
Data storage
Emission
Emissions
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Hybrid Perovskite
Multitasking
Optoelectronic devices
Photoluminescence
title Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%E2%80%90Inorganic%20Hybrid%20Ferroelectric%20and%20Antiferroelectric%20with%20Afterglow%20Emission&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Zhi%E2%80%90Xu&rft.date=2024-04-02&rft.volume=63&rft.issue=14&rft.spage=e202319650&rft.epage=n/a&rft.pages=e202319650-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202319650&rft_dat=%3Cproquest_cross%3E2928856627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973345944&rft_id=info:pmid/38275283&rfr_iscdi=true