Organic‐Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission

Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental resear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-04, Vol.63 (14), p.e202319650-n/a
Hauptverfasser: Zhang, Zhi‐Xu, Wang, He, Ni, Hao‐Fei, Wang, Na, Wang, Chang‐Feng, Huang, Pei‐Zhi, Jia, Qiang‐Qiang, Teri, Gele, Fu, Da‐Wei, Zhang, Yujian, An, Zhongfu, Zhang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light‐polarization interactions at electron scale. Integrating ferroelectricity and long‐lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic‐inorganic hybrid material. Remarkably, the presented (4‐methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi‐level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities. Implementing cationic customization and halogen engineering not only enable a dramatic enhancement of Curie temperature (ΔTC=114.4 K), but also realize the first integration of notable ferroelectricity and long afterglow emission in (4‐methylpiperidium)CdCl3 with one‐dimensional hybrid perovskite architecture.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202319650