Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules

We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (8), p.1523-1532
Hauptverfasser: Li, Yang, He, Feng, Sato, Takeshi, Ishikawa, Kenichi L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1532
container_issue 8
container_start_page 1523
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 128
creator Li, Yang
He, Feng
Sato, Takeshi
Ishikawa, Kenichi L.
description We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron–electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H2, LiH, and N2, shedding light on the impact of electron correlations in these systems.
doi_str_mv 10.1021/acs.jpca.3c06799
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928856350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928856350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-e95b40dc677cfb02854eac36afe59766af610aaed86bf15fa01173f9a5bb7bce3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolDYmZBHBlzsuM7HWKUUKrViaJkjxzmrrpI4xA4S_x6XFjamO-me95XuQeiO0QmjEXuSyk32nZITrmicZNkZumIiokRETJyHnaYZETHPRujauT2llPFoeolGPOUJj9L0CrXLpquhgdZLb2yLrcZ-B3hrGiBz6KCtwgnn9kB5IDPlzSeQTScV4A3UmuS2dcb5QJGFgbrCa_A7W2Ftezw30tvGKLy2NaihBneDLrSsHdye5hi9L563-StZvb0s89mKSM5jTyAT5ZRWKk4SpUsapWIKUvFYahBZEocZMyolVGlcaia0pIwlXGdSlGVSKuBj9HDs7Xr7MYDzRWOcgrqWLdjBFVEWvg9mBA0oPaKqt871oIuuN43svwpGi4PlIlguDpaLk-UQuT-1D2UD1V_gV2sAHo_AT9QOfRue_b_vGytJitY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928856350</pqid></control><display><type>article</type><title>Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules</title><source>American Chemical Society Publications</source><creator>Li, Yang ; He, Feng ; Sato, Takeshi ; Ishikawa, Kenichi L.</creator><creatorcontrib>Li, Yang ; He, Feng ; Sato, Takeshi ; Ishikawa, Kenichi L.</creatorcontrib><description>We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron–electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H2, LiH, and N2, shedding light on the impact of electron correlations in these systems.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.3c06799</identifier><identifier>PMID: 38373288</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2024-02, Vol.128 (8), p.1523-1532</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-e95b40dc677cfb02854eac36afe59766af610aaed86bf15fa01173f9a5bb7bce3</citedby><cites>FETCH-LOGICAL-a336t-e95b40dc677cfb02854eac36afe59766af610aaed86bf15fa01173f9a5bb7bce3</cites><orcidid>0000-0001-8952-7885 ; 0000-0003-2969-0212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.3c06799$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.3c06799$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38373288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Sato, Takeshi</creatorcontrib><creatorcontrib>Ishikawa, Kenichi L.</creatorcontrib><title>Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron–electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H2, LiH, and N2, shedding light on the impact of electron correlations in these systems.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EolDYmZBHBlzsuM7HWKUUKrViaJkjxzmrrpI4xA4S_x6XFjamO-me95XuQeiO0QmjEXuSyk32nZITrmicZNkZumIiokRETJyHnaYZETHPRujauT2llPFoeolGPOUJj9L0CrXLpquhgdZLb2yLrcZ-B3hrGiBz6KCtwgnn9kB5IDPlzSeQTScV4A3UmuS2dcb5QJGFgbrCa_A7W2Ftezw30tvGKLy2NaihBneDLrSsHdye5hi9L563-StZvb0s89mKSM5jTyAT5ZRWKk4SpUsapWIKUvFYahBZEocZMyolVGlcaia0pIwlXGdSlGVSKuBj9HDs7Xr7MYDzRWOcgrqWLdjBFVEWvg9mBA0oPaKqt871oIuuN43svwpGi4PlIlguDpaLk-UQuT-1D2UD1V_gV2sAHo_AT9QOfRue_b_vGytJitY</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Li, Yang</creator><creator>He, Feng</creator><creator>Sato, Takeshi</creator><creator>Ishikawa, Kenichi L.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8952-7885</orcidid><orcidid>https://orcid.org/0000-0003-2969-0212</orcidid></search><sort><creationdate>20240229</creationdate><title>Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules</title><author>Li, Yang ; He, Feng ; Sato, Takeshi ; Ishikawa, Kenichi L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-e95b40dc677cfb02854eac36afe59766af610aaed86bf15fa01173f9a5bb7bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Sato, Takeshi</creatorcontrib><creatorcontrib>Ishikawa, Kenichi L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>He, Feng</au><au>Sato, Takeshi</au><au>Ishikawa, Kenichi L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-02-29</date><risdate>2024</risdate><volume>128</volume><issue>8</issue><spage>1523</spage><epage>1532</epage><pages>1523-1532</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron–electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H2, LiH, and N2, shedding light on the impact of electron correlations in these systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38373288</pmid><doi>10.1021/acs.jpca.3c06799</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8952-7885</orcidid><orcidid>https://orcid.org/0000-0003-2969-0212</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (8), p.1523-1532
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2928856350
source American Chemical Society Publications
subjects A: New Tools and Methods in Experiment and Theory
title Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20the%20Time-Dependent%20Complete-Active-Space%20Self-Consistent-Field%20Method%20for%20Diatomic%20Molecules&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Li,%20Yang&rft.date=2024-02-29&rft.volume=128&rft.issue=8&rft.spage=1523&rft.epage=1532&rft.pages=1523-1532&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.3c06799&rft_dat=%3Cproquest_cross%3E2928856350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928856350&rft_id=info:pmid/38373288&rfr_iscdi=true