Implementation of the Time-Dependent Complete-Active-Space Self-Consistent-Field Method for Diatomic Molecules

We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (8), p.1523-1532
Hauptverfasser: Li, Yang, He, Feng, Sato, Takeshi, Ishikawa, Kenichi L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a computational approach that implements the time-dependent complete-active-space self-consistent-field method, as introduced in [Phys. Rev. A 88, 023402 (2013)]. Our implementation addresses the challenge of diatomic molecules subjected to an intense laser pulse by considering the full dimensionality of the problem using prolate spheroidal coordinates. The method incorporates the gauge-invariant frozen-core approximation, boosts the evaluation of the electron–electron interaction term using finite-element discrete-variable representation with Neumann expansion, and utilizes an exponential time differencing scheme tailored for the stable propagation of the stiff nonlinear orbital functions. We have successfully applied this methodology to study high-harmonic generation in diatomic molecules such as H2, LiH, and N2, shedding light on the impact of electron correlations in these systems.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.3c06799