Integrated network pharmacology and experimental validation-based approach to reveal the underlying mechanisms and key material basis of Jinhua Qinggan granules against acute lung injury

Jinhua Qinggan granules (JHQG), the traditional Chinese formula come into the market in 2016, has been proved clinically effective against coronavirus disease. Acute lung injury (ALI) is a major complication of respiratory infection such as coronavirus and influenza virus, with a high clinical fatal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2024-05, Vol.326, p.117920-117920, Article 117920
Hauptverfasser: Mi, Yan, Liang, Yusheng, Liu, Yeshu, Bai, Zisong, Li, Ning, Tan, Shaowen, Hou, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Jinhua Qinggan granules (JHQG), the traditional Chinese formula come into the market in 2016, has been proved clinically effective against coronavirus disease. Acute lung injury (ALI) is a major complication of respiratory infection such as coronavirus and influenza virus, with a high clinical fatality rate. Macrophage activation-induced inflammatory response plays a crucial role in the pathogenesis of ALI. However, the participation of inflammatory response in the efficacy of JHQG and its material basis against ALI is still unknown. The research aims to investigate the inflammatory response-involved efficacy of JHQG on ALI, explore the “ingredient-target-pathway” mechanisms, and searching for key material basis of JHQG by integrated network pharmacology and experimental validation-based approach. Lipopolysaccharide (LPS)-induced ALI mice was established to assess the protective impact of JHQG. Network pharmacology was utilized to identify potential targets of JHQG and investigate its action mechanisms related to inflammatory response in treating ALI. The therapeutic effect and mechanism of the primary active ingredient in JHQG was verified through high performance liquid chromatography (HPLC) and a combination of wet experiments. JHQG remarkably alleviated lung damage in mice model via suppressing macrophage activation, and inhibiting pro-inflammatory mediator level, p-ERK and p-STAT3 expression, TLR4/NF-κB activation. Network pharmacology combined with HPLC found luteolin is the main effective component of JHQG, and it could interact with TLR4/MD2 complex, further exerting the anti-inflammatory property and the protective role against ALI. In summary, our finding clarified the underlying mechanisms and material basis of JHQG therapy for ALI by integrated network pharmacology and experimental validation-based strategy. [Display omitted]
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2024.117920