A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy

Objective Accurate delineation of renal regions of interest (ROIs) is critical for the assessment of renal function in pediatric dynamic renal scintigraphy (DRS). The purpose of this study was to develop and evaluate a deep learning (DL) model that can fully automatically delineate renal ROIs and ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of nuclear medicine 2024-05, Vol.38 (5), p.382-390
Hauptverfasser: Ji, Xueli, Zhu, Guohui, Gou, Jinyu, Chen, Suyun, Zhao, Wenyu, Sun, Zhanquan, Fu, Hongliang, Wang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 5
container_start_page 382
container_title Annals of nuclear medicine
container_volume 38
creator Ji, Xueli
Zhu, Guohui
Gou, Jinyu
Chen, Suyun
Zhao, Wenyu
Sun, Zhanquan
Fu, Hongliang
Wang, Hui
description Objective Accurate delineation of renal regions of interest (ROIs) is critical for the assessment of renal function in pediatric dynamic renal scintigraphy (DRS). The purpose of this study was to develop and evaluate a deep learning (DL) model that can fully automatically delineate renal ROIs and calculate renal function in pediatric 99m Technetium-ethylenedicysteine ( 99m Tc-EC) DRS. Methods This study retrospectively analyzed 1,283 pediatric DRS data at a single center from January to December 2018. These patients were divided into training set ( n  = 1027), validation set ( n  = 128), and testing set ( n  = 128). A fully automatic segmentation of ROIs (FASR) model was developed and evaluated. The pixel values of the automatically segmented ROIs were calculated to predict renal blood perfusion rate (BPR) and differential renal function (DRF). Precision, recall rate, intersection over union (IOU), and Dice similarity coefficient (DSC) were used to evaluate the performance of FASR model. Intraclass correlation (ICC) and Pearson correlation analysis were used to compare the consistency of automatic and manual method in assessing the renal function parameters in the testing set. Results The FASR model achieved a precision of 0.88, recall rate of 0.94, IOU of 0.83, and DSC of 0.91. In the testing set, the r values of BPR and DRF calculated by the two methods were 0.94 ( P  
doi_str_mv 10.1007/s12149-024-01907-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928852735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928852735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-eead4684f85adf58cc0884ffb310ea66fbdd82c0de9dcf9e3c31b4f4d6eea89e3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1ERW8LL8ACWWLTjcF_cZxlVUGpVIkNrC3HHqepEjvYyeI-CO-L21xAYsFqNDrfnDPSQegtox8Ype3HwjiTHaFcEso62pL2BTowrSRRUoiX6EA7JknLdHuOLkp5pJTrRvNX6Fxo0SrFuwP6eY3DNk1HbLc1zXYdHfYAC57A5jjGgfS2gMczrA_J45AyLjDMENeq4QzDmGLBKeAxrpChrNhGj5cMfnQnJNqpRsS6plgxvFTNrvkp6BjtXOfOFFc9xiHb5eH4Gp0FOxV4c5qX6PvnT99uvpD7r7d3N9f3xAmuVgJgvVRaBt1YHxrtHNV1C71gFKxSofdec0c9dN6FDoQTrJdBelUvdd0v0dXuu-T0Y6vvm3ksDqbJRkhbMbzjWje8FU1F3_-DPqYt18eLEVRoxRomaaX4TrmcSskQzJLH2eajYdQ8lWb20kwtzTyXZtp69O5kvfUz-D8nv1uqgNiBUqU4QP6b_R_bX2uIpt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038615140</pqid></control><display><type>article</type><title>A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ji, Xueli ; Zhu, Guohui ; Gou, Jinyu ; Chen, Suyun ; Zhao, Wenyu ; Sun, Zhanquan ; Fu, Hongliang ; Wang, Hui</creator><creatorcontrib>Ji, Xueli ; Zhu, Guohui ; Gou, Jinyu ; Chen, Suyun ; Zhao, Wenyu ; Sun, Zhanquan ; Fu, Hongliang ; Wang, Hui</creatorcontrib><description>Objective Accurate delineation of renal regions of interest (ROIs) is critical for the assessment of renal function in pediatric dynamic renal scintigraphy (DRS). The purpose of this study was to develop and evaluate a deep learning (DL) model that can fully automatically delineate renal ROIs and calculate renal function in pediatric 99m Technetium-ethylenedicysteine ( 99m Tc-EC) DRS. Methods This study retrospectively analyzed 1,283 pediatric DRS data at a single center from January to December 2018. These patients were divided into training set ( n  = 1027), validation set ( n  = 128), and testing set ( n  = 128). A fully automatic segmentation of ROIs (FASR) model was developed and evaluated. The pixel values of the automatically segmented ROIs were calculated to predict renal blood perfusion rate (BPR) and differential renal function (DRF). Precision, recall rate, intersection over union (IOU), and Dice similarity coefficient (DSC) were used to evaluate the performance of FASR model. Intraclass correlation (ICC) and Pearson correlation analysis were used to compare the consistency of automatic and manual method in assessing the renal function parameters in the testing set. Results The FASR model achieved a precision of 0.88, recall rate of 0.94, IOU of 0.83, and DSC of 0.91. In the testing set, the r values of BPR and DRF calculated by the two methods were 0.94 ( P  &lt; 0.01) and 0.97 ( P  &lt; 0.01), and the ICCs (95% confidence interval CI) were 0.94 (0.90—0.96) and 0.94 (0.91—0.96). Conclusion We propose a reliable and stable DL model that can fully automatically segment ROIs and accurately predict renal function in pediatric 99m Tc-EC DRS.</description><identifier>ISSN: 0914-7187</identifier><identifier>EISSN: 1864-6433</identifier><identifier>DOI: 10.1007/s12149-024-01907-7</identifier><identifier>PMID: 38376629</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Child ; Correlation analysis ; Deep Learning ; Humans ; Imaging ; Kidney - diagnostic imaging ; Kidney Function Tests - methods ; Medicine ; Medicine &amp; Public Health ; Nuclear Medicine ; Original Article ; Pediatrics ; Performance evaluation ; Radiology ; Radionuclide Imaging ; Recall ; Renal function ; Retrospective Studies ; Scintigraphy</subject><ispartof>Annals of nuclear medicine, 2024-05, Vol.38 (5), p.382-390</ispartof><rights>The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-eead4684f85adf58cc0884ffb310ea66fbdd82c0de9dcf9e3c31b4f4d6eea89e3</cites><orcidid>0000-0001-5109-8691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12149-024-01907-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12149-024-01907-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38376629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Xueli</creatorcontrib><creatorcontrib>Zhu, Guohui</creatorcontrib><creatorcontrib>Gou, Jinyu</creatorcontrib><creatorcontrib>Chen, Suyun</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Fu, Hongliang</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><title>A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy</title><title>Annals of nuclear medicine</title><addtitle>Ann Nucl Med</addtitle><addtitle>Ann Nucl Med</addtitle><description>Objective Accurate delineation of renal regions of interest (ROIs) is critical for the assessment of renal function in pediatric dynamic renal scintigraphy (DRS). The purpose of this study was to develop and evaluate a deep learning (DL) model that can fully automatically delineate renal ROIs and calculate renal function in pediatric 99m Technetium-ethylenedicysteine ( 99m Tc-EC) DRS. Methods This study retrospectively analyzed 1,283 pediatric DRS data at a single center from January to December 2018. These patients were divided into training set ( n  = 1027), validation set ( n  = 128), and testing set ( n  = 128). A fully automatic segmentation of ROIs (FASR) model was developed and evaluated. The pixel values of the automatically segmented ROIs were calculated to predict renal blood perfusion rate (BPR) and differential renal function (DRF). Precision, recall rate, intersection over union (IOU), and Dice similarity coefficient (DSC) were used to evaluate the performance of FASR model. Intraclass correlation (ICC) and Pearson correlation analysis were used to compare the consistency of automatic and manual method in assessing the renal function parameters in the testing set. Results The FASR model achieved a precision of 0.88, recall rate of 0.94, IOU of 0.83, and DSC of 0.91. In the testing set, the r values of BPR and DRF calculated by the two methods were 0.94 ( P  &lt; 0.01) and 0.97 ( P  &lt; 0.01), and the ICCs (95% confidence interval CI) were 0.94 (0.90—0.96) and 0.94 (0.91—0.96). Conclusion We propose a reliable and stable DL model that can fully automatically segment ROIs and accurately predict renal function in pediatric 99m Tc-EC DRS.</description><subject>Child</subject><subject>Correlation analysis</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Imaging</subject><subject>Kidney - diagnostic imaging</subject><subject>Kidney Function Tests - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nuclear Medicine</subject><subject>Original Article</subject><subject>Pediatrics</subject><subject>Performance evaluation</subject><subject>Radiology</subject><subject>Radionuclide Imaging</subject><subject>Recall</subject><subject>Renal function</subject><subject>Retrospective Studies</subject><subject>Scintigraphy</subject><issn>0914-7187</issn><issn>1864-6433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhS1ERW8LL8ACWWLTjcF_cZxlVUGpVIkNrC3HHqepEjvYyeI-CO-L21xAYsFqNDrfnDPSQegtox8Ype3HwjiTHaFcEso62pL2BTowrSRRUoiX6EA7JknLdHuOLkp5pJTrRvNX6Fxo0SrFuwP6eY3DNk1HbLc1zXYdHfYAC57A5jjGgfS2gMczrA_J45AyLjDMENeq4QzDmGLBKeAxrpChrNhGj5cMfnQnJNqpRsS6plgxvFTNrvkp6BjtXOfOFFc9xiHb5eH4Gp0FOxV4c5qX6PvnT99uvpD7r7d3N9f3xAmuVgJgvVRaBt1YHxrtHNV1C71gFKxSofdec0c9dN6FDoQTrJdBelUvdd0v0dXuu-T0Y6vvm3ksDqbJRkhbMbzjWje8FU1F3_-DPqYt18eLEVRoxRomaaX4TrmcSskQzJLH2eajYdQ8lWb20kwtzTyXZtp69O5kvfUz-D8nv1uqgNiBUqU4QP6b_R_bX2uIpt8</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Ji, Xueli</creator><creator>Zhu, Guohui</creator><creator>Gou, Jinyu</creator><creator>Chen, Suyun</creator><creator>Zhao, Wenyu</creator><creator>Sun, Zhanquan</creator><creator>Fu, Hongliang</creator><creator>Wang, Hui</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5109-8691</orcidid></search><sort><creationdate>20240501</creationdate><title>A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy</title><author>Ji, Xueli ; Zhu, Guohui ; Gou, Jinyu ; Chen, Suyun ; Zhao, Wenyu ; Sun, Zhanquan ; Fu, Hongliang ; Wang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-eead4684f85adf58cc0884ffb310ea66fbdd82c0de9dcf9e3c31b4f4d6eea89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Child</topic><topic>Correlation analysis</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Imaging</topic><topic>Kidney - diagnostic imaging</topic><topic>Kidney Function Tests - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nuclear Medicine</topic><topic>Original Article</topic><topic>Pediatrics</topic><topic>Performance evaluation</topic><topic>Radiology</topic><topic>Radionuclide Imaging</topic><topic>Recall</topic><topic>Renal function</topic><topic>Retrospective Studies</topic><topic>Scintigraphy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Xueli</creatorcontrib><creatorcontrib>Zhu, Guohui</creatorcontrib><creatorcontrib>Gou, Jinyu</creatorcontrib><creatorcontrib>Chen, Suyun</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><creatorcontrib>Sun, Zhanquan</creatorcontrib><creatorcontrib>Fu, Hongliang</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of nuclear medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Xueli</au><au>Zhu, Guohui</au><au>Gou, Jinyu</au><au>Chen, Suyun</au><au>Zhao, Wenyu</au><au>Sun, Zhanquan</au><au>Fu, Hongliang</au><au>Wang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy</atitle><jtitle>Annals of nuclear medicine</jtitle><stitle>Ann Nucl Med</stitle><addtitle>Ann Nucl Med</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>38</volume><issue>5</issue><spage>382</spage><epage>390</epage><pages>382-390</pages><issn>0914-7187</issn><eissn>1864-6433</eissn><abstract>Objective Accurate delineation of renal regions of interest (ROIs) is critical for the assessment of renal function in pediatric dynamic renal scintigraphy (DRS). The purpose of this study was to develop and evaluate a deep learning (DL) model that can fully automatically delineate renal ROIs and calculate renal function in pediatric 99m Technetium-ethylenedicysteine ( 99m Tc-EC) DRS. Methods This study retrospectively analyzed 1,283 pediatric DRS data at a single center from January to December 2018. These patients were divided into training set ( n  = 1027), validation set ( n  = 128), and testing set ( n  = 128). A fully automatic segmentation of ROIs (FASR) model was developed and evaluated. The pixel values of the automatically segmented ROIs were calculated to predict renal blood perfusion rate (BPR) and differential renal function (DRF). Precision, recall rate, intersection over union (IOU), and Dice similarity coefficient (DSC) were used to evaluate the performance of FASR model. Intraclass correlation (ICC) and Pearson correlation analysis were used to compare the consistency of automatic and manual method in assessing the renal function parameters in the testing set. Results The FASR model achieved a precision of 0.88, recall rate of 0.94, IOU of 0.83, and DSC of 0.91. In the testing set, the r values of BPR and DRF calculated by the two methods were 0.94 ( P  &lt; 0.01) and 0.97 ( P  &lt; 0.01), and the ICCs (95% confidence interval CI) were 0.94 (0.90—0.96) and 0.94 (0.91—0.96). Conclusion We propose a reliable and stable DL model that can fully automatically segment ROIs and accurately predict renal function in pediatric 99m Tc-EC DRS.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>38376629</pmid><doi>10.1007/s12149-024-01907-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5109-8691</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0914-7187
ispartof Annals of nuclear medicine, 2024-05, Vol.38 (5), p.382-390
issn 0914-7187
1864-6433
language eng
recordid cdi_proquest_miscellaneous_2928852735
source MEDLINE; SpringerNature Journals
subjects Child
Correlation analysis
Deep Learning
Humans
Imaging
Kidney - diagnostic imaging
Kidney Function Tests - methods
Medicine
Medicine & Public Health
Nuclear Medicine
Original Article
Pediatrics
Performance evaluation
Radiology
Radionuclide Imaging
Recall
Renal function
Retrospective Studies
Scintigraphy
title A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fully%20automatic%20deep%20learning-based%20method%20for%20segmenting%20regions%20of%20interest%20and%20predicting%20renal%20function%20in%20pediatric%20dynamic%20renal%20scintigraphy&rft.jtitle=Annals%20of%20nuclear%20medicine&rft.au=Ji,%20Xueli&rft.date=2024-05-01&rft.volume=38&rft.issue=5&rft.spage=382&rft.epage=390&rft.pages=382-390&rft.issn=0914-7187&rft.eissn=1864-6433&rft_id=info:doi/10.1007/s12149-024-01907-7&rft_dat=%3Cproquest_cross%3E2928852735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038615140&rft_id=info:pmid/38376629&rfr_iscdi=true