Natural convection heat transfer in partially open inclined square cavities

A numerical study has been carried out on inclined partially open square cavities, which are formed by adiabatic walls and a partial opening. The surface of the wall inside the cavity facing the partial opening is isothermal. Steady-state heat transfer by laminar natural convection in a two dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2005-04, Vol.48 (8), p.1470-1479
Hauptverfasser: Bilgen, E., Oztop, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical study has been carried out on inclined partially open square cavities, which are formed by adiabatic walls and a partial opening. The surface of the wall inside the cavity facing the partial opening is isothermal. Steady-state heat transfer by laminar natural convection in a two dimensional partially open cavity is studied by numerically solving equations of mass, momentum and energy. Streamlines and isotherms are produced, heat and mass transfer is calculated. A parametric study is carried out using following parameters: Rayleigh number from 10 3 to 10 6, dimensionless aperture size from 0.25 to 0.75, aperture position at high, center and low, and inclination of the opening from 0° (facing upward) to 120° (facing 30° downward). It is found that the volume flow rate and Nusselt number are an increasing function of Rayleigh number, aperture size and generally aperture position. Other parameters being constant, Nusselt number is a non-linear function of the inclination angle. Depending on the application, heat transfer can be maximized or minimized by selecting appropriate parameters, namely aperture size, aperture position and inclination angle at a given operation Rayleigh number.
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2004.10.020