The SquAd derivation: A Square Additive approach to the turbulent Prandtl number

Liquid metals have been chosen as primary coolant of innovative nuclear systems under current development. They present a very high thermal conductivity and hence a very low molecular Prandtl number. This feature challenges the modeling of turbulent thermal flows applying the Reynolds analogy. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open research Europe 2023, Vol.3, p.43-43
1. Verfasser: Moreau, Vincent
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquid metals have been chosen as primary coolant of innovative nuclear systems under current development. They present a very high thermal conductivity and hence a very low molecular Prandtl number. This feature challenges the modeling of turbulent thermal flows applying the Reynolds analogy. This paper addresses this challenge. A new formula for the turbulent Prandtl number is derived in terms of local variables available from two-equations turbulence models. The derivation is a direct consequence of the expected square additivity of the molecular and flow parameters defining the effective viscosity and the effective conductivity. The formula does not degenerate and leads to a Kays like formulation if approximated. While constrained by the quality of the turbulent viscosity modeling, it has the potential to improve the numerical simulation of turbulent thermal flows.
ISSN:2732-5121
2732-5121
DOI:10.12688/openreseurope.15367.3