Microwave-Mediated Synthesis of Lead-Free Cesium Titanium Bromide Double Perovskite: A Sustainable Approach

Theoretical studies have identified cesium titanium bromide (Cs2TiBr6), a vacancy-ordered double perovskite, as a promising lead-free and earth-abundant candidate to replace Pb-based perovskites in photovoltaics. Our research is focused on overcoming the limitations associated with the current Cs2Ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2024-02, Vol.36 (3), p.1728-1736
Hauptverfasser: Reyes-Francis, Emmanuel, Echeverría-Arrondo, Carlos, Esparza, Diego, López-Luke, Tzarara, Soto-Montero, Tatiana, Morales-Masis, Monica, Turren-Cruz, Silver-Hamill, Mora-Seró, Iván, Julián-López, Beatriz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Theoretical studies have identified cesium titanium bromide (Cs2TiBr6), a vacancy-ordered double perovskite, as a promising lead-free and earth-abundant candidate to replace Pb-based perovskites in photovoltaics. Our research is focused on overcoming the limitations associated with the current Cs2TiBr6 syntheses, which often involve high-vacuum and high-temperature evaporation techniques, high-energy milling, or intricate multistep solution processes conducted under an inert atmosphere, constraints that hinder industrial scalability. This study presents a straightforward, low-energy, and scalable solution procedure using microwave radiation to induce the formation of highly crystalline Cs2TiBr6 in a polar solvent. This methodology, where the choice of the solvent plays a crucial role, not only reduces the energy costs associated with perovskite production but also imparts exceptional stability to the resulting solid, in comparison with previous reports. This is a critical prerequisite for any technological advancement. The low-defective material demonstrates unprecedented structural stability under various stimuli such as moisture, oxygen, elevated temperatures (over 130 °C), and continuous exposure to white light illumination. In summary, our study represents an important step forward in the efficient and cost-effective synthesis of Cs2TiBr6, offering a compelling solution for the development of eco-friendly, earth-abundant Pb-free perovskite materials.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.3c03108