Flavonoids and phenolic acids from sugarcane: Distribution in the plant, changes during processing, and potential benefits to industry and health

Sugarcane (Saccharum sp.) plants are grown in warmer climates throughout the world and processed to produce sugar as well as other useful byproducts such as molasses and bagasse. Sugarcane is rich in (poly)phenols, but there has been no attempt to critically evaluate the published information based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comprehensive reviews in food science and food safety 2024-03, Vol.23 (2), p.e13307-n/a
Hauptverfasser: Hewawansa, Ulluwis H. A. J., Houghton, Michael J., Barber, Elizabeth, Costa, Ricardo J. S., Kitchen, Barry, Williamson, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sugarcane (Saccharum sp.) plants are grown in warmer climates throughout the world and processed to produce sugar as well as other useful byproducts such as molasses and bagasse. Sugarcane is rich in (poly)phenols, but there has been no attempt to critically evaluate the published information based on the use of suitable methodologies. The objective of this review is to evaluate the quantitative and qualitative (poly)phenolic profiles of individual parts of the sugarcane plant and its multiple industrial products, which will help develop new processes and uses for sugarcane (poly)phenols. The quantitative analysis involves the examination of extraction, concentration, and analytical techniques used in each study for each plant part and product. The qualitative analysis indicates the identification of various (poly)phenols throughout the sugarcane processing chain, using only compounds elucidated through robust analytical methodologies such as mass spectrometry or nuclear magnetic resonance. In conclusion, sugarcane (poly)phenols are predominantly flavonoids and phenolic acids. The main flavonoids, derivatives of apigenin, luteolin, and tricin, with a substantial proportion of C‐glycosides, are consistently found across all phases of sugarcane processing. The principal phenolic acids reported throughout the process include chlorogenic acids, as well as ferulic and caffeic acids mostly observed after hydrolysis. The derivation of precise quantitative information across publications is impeded by inconsistencies in analytical methodologies. The presence of multiple (poly)phenols with potential benefits for industrial applications and for health suggests sugarcane could be a useful provider of valuable compounds for future use in research and industrial processes.
ISSN:1541-4337
1541-4337
DOI:10.1111/1541-4337.13307