Global bifurcation results on degenerate quasilinear elliptic systems
In this paper we prove certain bifurcation results for the following degenerate quasilinear system − ▽ ( ν 1 ( x ) | ▽ u | p − 2 ▽ u ) = λ a ( x ) | u | p − 2 u + λ b ( x ) | u | α | v | β v + f ( x , λ , u , v ) , − ▽ ( ν 2 ( x ) | ▽ u | p − 2 ▽ u ) = λ d ( x ) | v | q − 2 v + λ b ( x ) | u | α | v...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2007, Vol.66 (1), p.214-227 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove certain bifurcation results for the following degenerate quasilinear system
−
▽
(
ν
1
(
x
)
|
▽
u
|
p
−
2
▽
u
)
=
λ
a
(
x
)
|
u
|
p
−
2
u
+
λ
b
(
x
)
|
u
|
α
|
v
|
β
v
+
f
(
x
,
λ
,
u
,
v
)
,
−
▽
(
ν
2
(
x
)
|
▽
u
|
p
−
2
▽
u
)
=
λ
d
(
x
)
|
v
|
q
−
2
v
+
λ
b
(
x
)
|
u
|
α
|
v
|
β
u
+
g
(
x
,
λ
,
u
,
v
)
,
x
∈
Ω
,
u
|
∂
Ω
=
v
|
∂
Ω
=
0
,
where
Ω
is a bounded and connected subset of
R
N
, with
N
≥
2
. This is achieved by applying topological degree and global bifurcation theory (in the sense of Rabinowitz). |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2005.11.033 |