High-order accurate, low numerical diffusion methods for aerodynamics

In recent years numerical methods have been widely used to effectively resolve complex flow features of aerodynamics flows with meshes that are reasonable for today's computers. High-order numerical methods were used mainly in direct numerical simulations and aeroacoustics. For many aeronautica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in aerospace sciences 2005-04, Vol.41 (3), p.192-300
1. Verfasser: Ekaterinaris, John A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years numerical methods have been widely used to effectively resolve complex flow features of aerodynamics flows with meshes that are reasonable for today's computers. High-order numerical methods were used mainly in direct numerical simulations and aeroacoustics. For many aeronautical applications, accurate computation of vortex-dominated flows is important because the vorticity in the flow field and the wake of swept wings at an incidence and rotor blades largely determines the distribution of loading. The main deficiency of widely available, second-order accurate methods for the accurate computation of these flows is the numerical diffusion of vorticity to unacceptable levels. Application of high-order accurate, low-diffusion numerical methods can significantly alleviate this deficiency of traditional second order methods. Furthermore, higher-order space discretizations have the potential to improve detached eddy simulation predictions of separated flows with significant unsteadiness. Recently developed high-order accurate finite-difference, finite-volume, and finite-element methods are reviewed. These methods can be used as an attractive alternative of traditional low-order central and upwind computational fluid dynamics methods for improved predictions of vortical and other complex, separated, unsteady flows. The main features of these methods are summarized, from a practical user's point of view, their applicability and relative strength is indicated, and examples from recent applications are presented to illustrate their performance on selected problems.
ISSN:0376-0421
1873-1724
DOI:10.1016/j.paerosci.2005.03.003