Genome-wide identification and expression profiles of sex-related gene families in the Pacific abalone Haliotis discus hannai

In recent years, members of the Dmrt family, TGF-β superfamily and Sox family have been recognized as crucial genes for sex determination/differentiation across diverse animal species. Nevertheless, knowledge regarding the abundance and potential functions of these genes in abalone remains limited....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part D, Genomics & proteomics Genomics & proteomics, 2024-06, Vol.50, p.101205-101205, Article 101205
Hauptverfasser: Zhang, Qian, Huang, Jianfang, Fu, Yangtao, Chen, Jianming, Wang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, members of the Dmrt family, TGF-β superfamily and Sox family have been recognized as crucial genes for sex determination/differentiation across diverse animal species. Nevertheless, knowledge regarding the abundance and potential functions of these genes in abalone remains limited. In this study, a total of 5, 10, and 7 members of the Dmrt family, the TGF-β superfamily and the Sox family, respectively, were identified in the Pacific abalone Haliotis discus hannai. Sequence characteristics, phylogenetic relationships and spatiotemporal expression profiles of these genes were investigated. Notably, HdDmrt-04 (Dmrt1/1L-like) emerged as a potential mollusc-specific gene with a preponderance for expression in the testis. Interestingly, none of the TGF-β superfamily members exhibited specific or elevated expression in the gonads, highlighting the need for further investigation into their role in abalone sex differentiation. The Sox proteins in H. discus hannai were categorized into 7 subfamilies: B1, B2, C, D, E, F, and H. Among them, HdSox-07 (SoxH-like) was observed to play a crucial role in testis development, while HdSox-03 (SoxB1-like) and HdSox-04 (SoxC-like) probably cooperate in abalone ovary development. Taken together, the results of the present study suggested that HdDmrt-04 and HdSox-07 can be used as male-specific markers for gonad differentiation in H. discus hannai and imply conservation of their functions across invertebrates and vertebrates. Our findings provide new insights into the evolution and genetic structure of the Dmrt family, the TGF-β superfamily and the Sox family in abalone and pave the way for a deeper understanding of sex differentiation in gastropods. •Genome-wide analysis of three sex-related gene families in the Pacific abalone•Gene characterization and evolution analyses of the Dmrt family, TGF-β superfamily and Sox family•HdDmrt-04 (Dmrt1/1L-like), a mollusc-specific Dmrt gene involved in testis development•HdSox-07 (SoxH-like) identified as a male-specific marker for gonad differentiation•HdSox-03 (SoxB1-like) and HdSox-04 (SoxC-like) may cooperate in abalone ovary development.
ISSN:1744-117X
1878-0407
DOI:10.1016/j.cbd.2024.101205