T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas

To investigate the application of the T2-weighted (T2)-fluid-attenuated inversion recovery (FLAIR) mismatch sign and machine learning-based multiparametric magnetic resonance imaging (MRI) radiomics in predicting 1p/19q non-co-deletion of lower-grade gliomas (LGGs). One hundred and forty-six patient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical radiology 2024-05, Vol.79 (5), p.e750-e758
Hauptverfasser: Tang, W.-T., Su, C.-Q., Lin, J., Xia, Z.-W., Lu, S.-S., Hong, X.-N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the application of the T2-weighted (T2)-fluid-attenuated inversion recovery (FLAIR) mismatch sign and machine learning-based multiparametric magnetic resonance imaging (MRI) radiomics in predicting 1p/19q non-co-deletion of lower-grade gliomas (LGGs). One hundred and forty-six patients, who had pathologically confirmed isocitrate dehydrogenase (IDH) mutant LGGs were assigned randomly to the training cohort (n=102) and the testing cohort (n=44) at a ratio of 7:3. The T2-FLAIR mismatch sign and conventional MRI features were evaluated. Radiomics features extracted from T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), FLAIR, apparent diffusion coefficient (ADC), and contrast-enhanced T1WI images (CE-T1WI). The models that displayed the best performance of each sequence were selected, and their predicted values as well as the T2-FLAIR mismatch sign data were collected to establish a final stacking model. Receiver operating characteristic curve (ROC) analyses and area under the curve (AUC) values were applied to evaluate and compare the performance of the models. The T2-FLAIR mismatch sign was more common in the IDH mutant 1p/19q non-co-deleted group (p
ISSN:0009-9260
1365-229X
DOI:10.1016/j.crad.2024.01.021