Li13YGe4O16: A Mid-infrared Rare-Earth Germanate Nonlinear Optical Crystal Featuring a Broad Transmission Range and an Enlarged Band Gap
Germanate is garnering increasing attention in the field of optoelectronics owing to its competitive optical transparency and robust stability. Herein, a novel lithium-rich rare-earth germanate, Li13YGe4O16, was fabricated for the first time using a high-temperature solution approach. This compound...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2024-02, Vol.63 (8), p.3986-3991 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Germanate is garnering increasing attention in the field of optoelectronics owing to its competitive optical transparency and robust stability. Herein, a novel lithium-rich rare-earth germanate, Li13YGe4O16, was fabricated for the first time using a high-temperature solution approach. This compound adopts the asymmetric space group Cmc21 (no. 36), characterized by isolated [YO6] and [GeO4] structural motifs with Li+ cations located in the channel. Notably, Li13YGe4O16 presents a short ultraviolet cutoff edge at 240 nm, indicative of an enlarged band gap of 4.96 eV and showcases a wide mid-infrared transmission region exceeding 6.0 μm. Moreover, Li13YGe4O16 features exceptional thermal stability and moderate second harmonic generation (SHG) intensity. Additionally, a theoretical analysis suggests that the distorted [YO6] octahedra. [GeO4] and [LiO4] tetrahedra play a significant role in the optical activities of Li13YGe4O16. These attributes endow Li13YGe4O16 with the potential to serve as a new mid-IR nonlinear optical (NLO) crystal and enrich the structural chemistry of germanates. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.3c04635 |