Improvement of signal propagation in the optoelectronic artificial spiking neuron by vibrational resonance
Experimental evidence of vibrational resonance (VR) in the optoelectronic artificial spiking neuron based on a single photon avalanche diode and a vertical cavity laser driven by two periodic signals with low and high frequencies is reported. It is shown that a very weak subthreshold low-frequency (...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2024-01, Vol.109 (1-1), p.014211-014211, Article 014211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experimental evidence of vibrational resonance (VR) in the optoelectronic artificial spiking neuron based on a single photon avalanche diode and a vertical cavity laser driven by two periodic signals with low and high frequencies is reported. It is shown that a very weak subthreshold low-frequency (LF) periodic signal can be greatly amplified by the additional high-frequency (HF) signal. The phenomenon shows up as a nonmonotonic resonant dependence of the LF response on the amplitude of the HF signal. Simultaneously, a strong resonant rise of the signal-to-noise ratio is also observed. In addition, for the characterization of VR an area under the first LF period in the probability density function of interspike intervals for the LF signal and the maximal amplitude in this area were used, both of which also demonstrate a resonant behavior depending on the amplitude of the HF signal. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.109.014211 |