Using Computer Vision to Detect E-cigarette Content in TikTok Videos
Abstract Introduction Previous research has identified abundant e-cigarette content on social media using primarily text-based approaches. However, frequently used social media platforms among youth, such as TikTok, contain primarily visual content, requiring the ability to detect e-cigarette-relate...
Gespeichert in:
Veröffentlicht in: | Nicotine & tobacco research 2024-02, Vol.26 (Supplement_1), p.S36-S42 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Introduction
Previous research has identified abundant e-cigarette content on social media using primarily text-based approaches. However, frequently used social media platforms among youth, such as TikTok, contain primarily visual content, requiring the ability to detect e-cigarette-related content across large sets of videos and images. This study aims to use a computer vision technique to detect e-cigarette-related objects in TikTok videos.
Aims and Methods
We searched 13 hashtags related to vaping on TikTok (eg, #vape) in November 2022 and obtained 826 still images extracted from a random selection of 254 posts. We annotated images for the presence of vaping devices, hands, and/or vapor clouds. We developed a YOLOv7-based computer vision model to detect these objects using 85% of extracted images (N = 705) for training and 15% (N = 121) for testing.
Results
Our model’s recall value was 0.77 for all three classes: vape devices, hands, and vapor. Our model correctly classified vape devices 92.9% of the time, with an average F1 score of 0.81.
Conclusions
The findings highlight the importance of having accurate and efficient methods to identify e-cigarette content on popular video-based social media platforms like TikTok. Our findings indicate that automated computer vision methods can successfully detect a range of e-cigarette-related content, including devices and vapor clouds, across images from TikTok posts. These approaches can be used to guide research and regulatory efforts.
Implications
Object detection, a computer vision machine learning model, can accurately and efficiently identify e-cigarette content on a primarily visual-based social media platform by identifying the presence of vaping devices and evidence of e-cigarette use (eg, hands and vapor clouds). The methods used in this study can inform computational surveillance systems for detecting e-cigarette content on video- and image-based social media platforms to inform and enforce regulations of e-cigarette content on social media. |
---|---|
ISSN: | 1469-994X 1469-994X |
DOI: | 10.1093/ntr/ntad184 |