Optical ReLU-like activation function based on a semiconductor laser with optical injection

Artificial neural networks usually consist of successive linear multiply-accumulate operations and nonlinear activation functions. However, most optical neural networks only achieve the linear operation in the optical domain, while the optical implementation of activation function remains challengin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2024-02, Vol.49 (4), p.818-821
Hauptverfasser: Liu, Guan-Ting, Shen, Yi-Wei, Li, Rui-Qian, Yu, Jingyi, He, Xuming, Wang, Cheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial neural networks usually consist of successive linear multiply-accumulate operations and nonlinear activation functions. However, most optical neural networks only achieve the linear operation in the optical domain, while the optical implementation of activation function remains challenging. Here we present an optical ReLU-like activation function (with 180° rotation) based on a semiconductor laser subject to the optical injection in an experiment. The ReLU-like function is achieved in a broad regime above the Hopf bifurcation of the injection-locking diagram and is operated in the continuous-wave mode. In particular, the slope of the activation function is reconfigurable by tuning the frequency difference between the master laser and the slave laser.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.511113