Geomagnetic effects of high-density plasma with southward magnetic field in the interplanetary coronal mass ejection observed on may 2-3, 1998
This paper aims to clarify the effect of high-density plasma in interplanetary coronal mass ejection (ICME) observed during the May 2–3, 1998 geomagnetic storm. The examination is performed based on the estimation of Dst index, which is calculated with the observed solar wind parameters of the ICME....
Gespeichert in:
Veröffentlicht in: | Earth, planets, and space planets, and space, 2006-01, Vol.58 (3), p.315-322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper aims to clarify the effect of high-density plasma in interplanetary coronal mass ejection (ICME) observed during the May 2–3, 1998 geomagnetic storm. The examination is performed based on the estimation of Dst index, which is calculated with the observed solar wind parameters of the ICME. The estimated Dst index variation is compared with Dst index variation provided by the World Data Center for Geomagnetism, Kyoto (WDC, Kyoto). From this examination, we find that the trend of the estimated Dst is in good agreement with that of the provided Dst when the thresholds are taken into account for both the solar wind plasma density and the dawn-to-dusk solar wind electric field, as 30 #/cc and 0.49 mV/m, respectively. From the result, we can conclude that the effect of high-density plasma is important on the enhancement of geomagnetic storm as well as the effect of the other solar wind parameters, such as the interplanetary magnetic field (IMF) Bz and solar wind velocity. On the other hand, the solar source of the magnetic field of this ICME is examined. The magnetic field structure of the ICME is examined by fitting the flux rope model to the observed magnetic field and solar wind speed. The results are compared with the magnetic structure of the bases of coronal helmet streamers. From this comparison we can find that the magnetic structure of the interplanetary flux rope is in good agreement with that of the neutral line of the base of coronal helmet streamers. The result suggests that if we look for the causes of geomagnetic storm we should take into account both the plasma structure and the magnetic structure of the base of coronal helmet streamers. |
---|---|
ISSN: | 1343-8832 1880-5981 1880-5981 |
DOI: | 10.1186/bf03351927 |